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Spherical stars

Introduction

• I will model stars using GR assuming spherical symmetry

• I will derive the Schwarzschild metric and T–O–V equation

• finally I will look into specific types of stars
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Spherical stars
Spherically symmetric coordinates

• First we need to derive our coordinate system



Spherically symmetric coordinates

Two-sphere in flat spacetime

General metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2)

Metric on 2-sphere

dl2 = r2(dθ2 + sin2 θdφ2) ≡ r2dΩ2

Schutz (2009, p. 256)
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Spherical stars
Spherically symmetric coordinates

Two-sphere in flat spacetime

• we start with the simplest spherically symmetric coordinates

– flat spacetime

• 2-sphere in Minkowski spacetime

– introduce dΩ2 for compactness
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Spherically symmetric coordinates

Two-sphere in curved spacetime

Metric on 2-sphere

dl2 = f(r′, t)dΩ2

Relation to r

f(r′, t) ≡ r2

Schutz (2009, pp. 256–257)
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Spherical stars
Spherically symmetric coordinates

Two-sphere in curved spacetime

• generalize to 2-sphere in arbitrary curved spherically symmetric
spacetime

• inclusion of curvature makes r2 some function of r′ and t
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Spherically symmetric coordinates

Two-sphere in curved spacetime

• generalize to 2-sphere in arbitrary curved spherically symmetric
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Spherically symmetric coordinates

Meaning of r
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Figure:
Surface with circular
symmetry but no
coordinate r = 0.

• not proper distance from center

• “curvature” or “area” coordinate
• radius of curvature and area

• r = const, t = const
• A = 4πr2

• C = 2πr

Schutz (2009, p. 257)
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Spherically symmetric coordinates

Meaning of r

• r is not necessary the “distance from the center”

• it is merely a coordinate – “curvature” or “area” coordinate

• for instance, we may have a spacetime where the center is missing

– example: Schwarzschild wormhole spacetime

• surface of constant (r, t) is a two-sphere of area A and circumference C
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Spherically symmetric coordinates

Spherically symmetric spacetime

General metric

ds2 = g00 dt2 + 2g0r dr dt+ grr dr2 + r2dΩ2

g00, g0r, and grr: functions of t and r

Schutz (2009, p. 258)
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Spherically symmetric coordinates

Spherically symmetric spacetime

• now consider not only surface of 2-sphere, but whole spacetime

• now we have some unknown g00, grr, and cross term g0r

• cross term g0r

• cross terms g0i for i ∈ {θ, φ} are zero from symmetry

• need more constraints to say anything particular about them
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Static spacetimes
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Static spacetimes

• now I will impose the static constraint



Static spacetimes

Motivation

• leads to simple derivation of Schwarzschild metric

• unique solution to spherically symmetric, asymptotically flat
Einstein vacuum field equations (Birkhoff’s theorem)

Schutz (2009, p. 263) and Misner, Thorne, and Wheeler (1973, p. 843)
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Static spacetimes

Motivation

• we choose the constraint of a static spacetime because

– it allows us to easily derive the Schwarzschild metric
– according to Birkhoff’s theorem, this metric is the unique solution

to the Einstein vacuum field equations for spherically symmetric,
asymptotically flat spacetimes

• George David Birkhoff
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Static spacetimes

Definition

A spacetime is static if we can find a time coordinate t for which

(i) the metric independent of t

gαβ,t = 0

(ii) the geometry unchanged by time reversal

t→ −t

Schutz (2009, p. 258)
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Static spacetimes

Definition

• now I define “static”

• first condition is that the metric is independent of time

– by itself, this condition is called “stationary”

• second condition is that metric unaffected by time reversal

• e.g. rotating stars are stationary but not static
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Static spacetimes

Time reversal

Λ : (t, x, y, z)→ (−t, x, y, z)

gᾱβ̄ = ΛαᾱΛβ
β̄
gαβ = gαβ

Transformation

Λ0
0̄ = x0

,0̄ =
∂t

∂(−t)
= −1

Λiī = xi,̄i =
∂xi

∂xi
= 1

Metric

g0̄0̄ = (Λ0
0̄)2g00 = g00

gr̄r̄ = (Λrr̄)
2grr = grr

g0̄r̄ = Λ0
0̄Λrr̄g0r = −g0r

Schutz (2009, p. 258)
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Λiī = xi,̄i =
∂xi

∂xi
= 1

Metric

g0̄0̄ = (Λ0
0̄)2g00 = g00

gr̄r̄ = (Λrr̄)
2grr = grr

g0̄r̄ = Λ0
0̄Λrr̄g0r = −g0r

Schutz (2009, p. 258)

2
0
1
5
-1
2
-1
4

Spherical stars
Static spacetimes

Time reversal

• now I use the static constraint to simplify the metric

• transformation

– (0, 0) term is dt
/

d(−t)
– spatial terms are 1 if transformed to themselves
– cross-terms are all zero, as coordinates independent of each other

• transformed metric

– (0, 0) term is unchanged, as −1 is squared
– (r, r) term is unchanged, as transformation is 1
– (0, r) term is negated, but must still be equal, so it’s zero

• no cross terms
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Λiī = xi,̄i =
∂xi

∂xi
= 1

Metric

g0̄0̄ = (Λ0
0̄)2g00 = g00

gr̄r̄ = (Λrr̄)
2grr = grr

g0̄r̄ = Λ0
0̄Λrr̄g0r = −g0r

Schutz (2009, p. 258)

2
0
1
5
-1
2
-1
4

Spherical stars
Static spacetimes

Time reversal

• now I use the static constraint to simplify the metric

• transformation

– (0, 0) term is dt
/

d(−t)
– spatial terms are 1 if transformed to themselves
– cross-terms are all zero, as coordinates independent of each other

• transformed metric

– (0, 0) term is unchanged, as −1 is squared
– (r, r) term is unchanged, as transformation is 1
– (0, r) term is negated, but must still be equal, so it’s zero

• no cross terms



Static spacetimes

The metric

Simplified metric

ds2 = g00 dt2 + grr dr2 + r2dΩ2

Replacement

g00 → −e2Φ, grr → e2Λ, provided g00 < 0 < grr

Static spherically symmetric metric

ds2 = −e2Φ dt2 + e2Λ dr2 + r2dΩ2

lim
r→∞

Φ(r) = lim
r→∞

Λ(r) = 0

Schutz (2009, pp. 258–259)
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Static spacetimes

The metric

• now we simplify the metric, since the cross term is zero

• we assume g00 to be negative, and grr to be positive

– signature is (−,+,+,+)
– holds inside stars but not black holes

• limits at infinity tell us that spacetime is asymptotically flat

– Φ = Λ = 0 =⇒ e2Φ = e2Λ = 1 and g = η
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Static spacetimes

Einstein Tensor

General Einstein tensor

Gαβ = Rαβ − 1

2
gαβR

Einstein tensor components

G00 =
1

r2
e2Φ d

dr
[r(1− e−2Λ)]

Grr = − 1

r2
e2Λ(1− e−2Λ) +

2

r
Φ′

Gθθ = r2e−2Λ[Φ′′ + (Φ′)2 + Φ′/r − Φ′Λ′ − Λ′/r]

Gφφ = sin2 θGθθ

Schutz (2009, pp. 165, 260)
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Static spacetimes

Einstein Tensor

• now we can use the metric to derive the Riemann tensor

• from that the Einstein tensor

• the derivation is involved, so we will just take them as is

• we’re going to use some of these components later on

• note that prime denotes d/dr
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Static spacetimes

Einstein Tensor

• now we can use the metric to derive the Riemann tensor

• from that the Einstein tensor

• the derivation is involved, so we will just take them as is

• we’re going to use some of these components later on

• note that prime denotes d/dr
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Spherical stars
Static perfect fluid

• stars are fluids – for simplicity we assume perfect

• thus we will impose additional constraints accordingly
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Four-velocity

Constraints

U i = 0 (static) ~U · ~U = −1 (conservation law)

Solving for U0

g00U
0U0 = −1 =⇒ U0 = (−g00)−1/2 = e−Φ

Solving for U0

U0 = g00U
0 = −eΦ
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Four-velocity

• static fluid, so in MCRF three-velocity components all zero

• we find the only non-zero term, U0, by relating to the dot product

• lower it with the metric, to use in next part
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0U0 = −1 =⇒ (U0)2 = (−g00)−1
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Static perfect fluid

Stress–energy tensor

Stress-energy tensor for perfect fluid

Tαβ = (ρ+ p)UαUβ + pgαβ

Components of Tαβ

Tiα = pgiα =⇒ Ti0 = 0

Tαβ is diagonal

T00 = (ρ+ p)e2Φ + p(−e2Φ) = ρe2Φ

Trr = pe2Λ, Tθθ = pr2

Tφφ = pr2 sin2 θ = Tθθ sin2 θ


T00 T0r T0θ T0φ

Tr0 Trr Trθ Trφ
Tθ0 Tθr Tθθ Tθφ
Tφ0 Tφr Tφθ Tφφ
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Stress–energy tensor

• Tiα = pgiα because spatial components of U are zero

• Tαβ is diagonal because of previous condition and gαβ is diagonal

• T00 requires a little algebra

• Tii just need to multiply metric by p

• Tφφ can be written in terms of Tθθ
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Static perfect fluid

Equation of state

Local thermodynamic equilibrium

p = p(ρ, S) ≈ p(ρ)

• pressure related to energy density and specific entropy

• we often deal with negligibly small entropies

Schutz (2009, p. 261)
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Spherical stars
Static perfect fluid

Equation of state

• in a static fluid we have local thermodynamic equilibrium

• pressure a function of density and specific entropy

• specific entropy assumed negligibly small



Static perfect fluid

Equations of motion

Conservation of 4-momentum

Tαβ;β = 0

• symmetries make only non-trivial solution α = r

Equation of motion

(ρ+ p)
dΦ

dr
= −dp

dr

Schutz (2009, pp. 175, 261)
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Static perfect fluid

Equations of motion

• first equation follows from conservation of 4-momentum

• due to symmetry, the only non-trivial solution is for α = r

• equation of motion for static perfect fluid

• (derivation in bonus slides)
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Static perfect fluid

Mass function

Einstein field equations

G00 = 8πT00 =⇒ 1

r2
e2Φ d

dr
[r(1− e−2Λ)] = 8πρe2Φ

m(r)

m(r) ≡ 1

2
r(1− e−2Λ) or grr = e2Λ ≡

(
1− 2m(r)

r

)−1

Relation to energy density

dm(r)

dr
= 4πr2ρ

Schutz (2009, pp. 260–262)
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Spherical stars
Static perfect fluid

Mass function

• inspect (0, 0) component of Einstein equations

• define the mass function, m(r)

• in Newtonian limit, m(r) is mass within radius r

m(r) = 4π

∫ r

0

(r′)2ρ(r′) dr′

• doesn’t work in GR, because total energy is not localizable
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m(r) = 4π

∫ r

0

(r′)2ρ(r′) dr′

• doesn’t work in GR, because total energy is not localizable
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Φ(r)

• inspect (r, r) component of Einstein equations

• gives us an expression for Φ(r)
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Spherical stars
Exterior Geometry

• until now, we’ve not considered whether we were inside or outside star

• properties inside different than outside (obviously)

• we’re going to inspect both cases, starting with outside



Exterior Geometry

Schwarzschild metric I

Condition

ρ = p = 0

Consequences

dm(r)

dr
= 4πr2ρ = 0 m(r) ≡M

dΦ(r)

dr
=
m(r) + 4πr3p

r[r − 2m(r)]
=

M

r(r − 2M)
Φ(r) =

1

2
log

(
1− 2M

r

)
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Spherical stars
Exterior Geometry

Schwarzschild metric I

• the external conditions just state we are in a vacuum

– breaks down when matter surrounds star

• m(r) is constant, we call it M

• dΦ/dr simplifies, and we can now integrate it to find Φ(r)
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• the external conditions just state we are in a vacuum

– breaks down when matter surrounds star

• m(r) is constant, we call it M

• dΦ/dr simplifies, and we can now integrate it to find Φ(r)



Exterior Geometry

Schwarzschild metric II

First two metric components

grr = e2Λ =

(
1− 2M

r

)−1

g00 = −e2Φ = −
(

1− 2M

r

)
Schwarzschild metric
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(

1− 2M
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)
dt2 +

(
1− 2M
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)−1
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Exterior Geometry

Schwarzschild metric II

• recall grr from earlier

• substituting our expression from Φ(r) into −e2Φ gives g00

• we have found the Schwarzschild metric!
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ds2 =−
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r
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dt2 +

(
1− 2M
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)−1

dr2 + r2 dΩ2

Far-field Schwarzschild metric (Cartesian)
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R
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(
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R
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Exterior Geometry

Far-field metric

• far-field metric of a star (far away)

• consider m(r) to be total mass M

• can use Taylor expansion, and to first order rewrite as such

• we can define a new coordinate R, the distance from the star

– Cartesian coordinates
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Interior structure

• now we look at the remaining, and most interesting regime

– inside the star

• our assumptions from outside the star no longer hold



Interior structure

Tolman–Oppenheimer–Volkov (T–O–V) equation

Condition

ρ 6= 0 p 6= 0

Recall

(ρ+ p)
dΦ

dr
= −dp

dr

dΦ

dr
=
m(r) + 4πr3p

r[r − 2m(r)]

T–O–V equation

dp

dr
= −(ρ+ p)[m(r) + 4πr3p]

r[r − 2m(r)]

Schutz (2009, pp. 261–264)
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Spherical stars
Interior structure

Tolman–Oppenheimer–Volkov (T–O–V)
equation

• inside a star, we cannot assume density and pressure are zero

• revisit two earlier equations

• substitute one into the other

• arrive at the T–O–V equation

• gives us an ODE relating

– pressure p
– density ρ
– mass function m(r)
– radius r

• eventually hope to solve all quantities in terms of r
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System of coupled differential equations

• T–O–V equation coupled with dm/dr and p(ρ)

– 3 equations
– 3 unknowns (m, ρ, p)
– Φ(r) only intermediate variable

• can integrate to find m(r), ρ(r), and p(r)
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Newtonian hydrostatic equilibrium

Newtonian limit

p� ρ; 4πr3p� m; m� r

Equation of hydrostatic equilibrium

dp

dr
= −(ρ+ p)[m(r) + 4πr3p]

r[r − 2m(r)]
= −ρm(r)

r2

Schutz (2009, pp. 265–266) and Hansen and Kawaler (1994, p. 3)
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Newtonian hydrostatic equilibrium

• in the Newtonian limit we get these constraints

• which allow us to cancel terms in the T–O–V equation

• and arrive at the familiar equation of HSE
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Constant density solution I

Constraint

ρ(r) ≡ ρ0

Mass function

m(r) =
4

3
πρ0

{
r3, r ≤ R,
R3, r ≥ R.

Schutz (2009, pp. 266-267)
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Interior structure

Constant density solution I

• because it is the simplest case, we are going to investigate a star of
uniform density, ρ(r) ≡ ρ0

– this is unphysical
– for instance, the speed of sound in such a star is infinite
– neutron star density is almost uniform
– also leads us to a result which holds for all stellar densities

• easy to obtain mass function from earlier differential equation

– equal to the density times the volume of the sphere enclosed by
radius r inside

– equal to the density times the volume of the entire star (r = R)
when outside

– continuous at the boundary
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Constant density solution II

T–O–V equation

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)
= −4

3
πr

(ρ0 + p)(ρ0 + 3p)

1− 8
3r

2ρ0

Integrated from center to internal radius r

ρ0 + 3p

ρ0 + p
=
ρ0 + 3pc
ρ0 + pc

√
1− 2m/r

Schutz (2009, pp. 264, 266-267)
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Constant density solution II

• recall the T–O–V equation, which describes the interior of the star

• we can substitute m(r) for r ≤ R, to simplify it as shown

• this gives us a separable differential equation

• we integrate the differential equation from the center (r = 0, p = pc) to
some radius (r = r, p = p)

• to simplify the expression again, we’ve re-written it in terms of m(r)

• now we have a relation between ρ0, p, and m(r) at a given r
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Constant density solution III

Radius R

R2 =
3

8πρ0

[
1−

(
ρ0 + pc
ρ0 + 3pc

)2
]

Central pressure pc

pc = ρ0
1−

√
1− 2M/R

3
√

1− 2M/R− 1

Limit on M/R

M/R→ 4/9 =⇒ pc →∞

Schutz (2009, pp. 266-267, 269)
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Constant density solution III

• at the surface, r = R and p = 0

• can solve the previous equation for R

• from this, we can solve for pc

– this gives us an expression for the central pressure necessary

• we can see that this blows up when M/R = 4/9

3
√

1− 8/9− 1 = 3
√

1/9− 1 = 1− 0 = 0

• radius cannot be smaller than (9/4)M

– less than the 2M needed for a black hole

• Buchdahl’s theorem states that this is true in general for all stars

– not just ρ(r) ≡ ρ0
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Buchdahl’s theorem

• even for non-constant density, M/R < 4/9

• intuitive explanation:
• assume there is a maximum sustainable density, (M/R)max

• consider an object of radius R
• most massive possible object would have maximum density

everywhere
• all other sustainable objects have a lower M/R

Carroll (2004, pp. 234)
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Buchdahl’s theorem

• restate M/R < 4/9 from Buchdahl’s theorem

• give Carroll’s intuitive explanation

– if we assume there is a maximum sustainable density in nature
– and we consider an object which fills a sphere with radius R
– then the most massive possible object within that volume would

have a uniform density
– all other objects would need to have a lower density
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Realistic stars

• now we’re going to have a brief overview of real stars



Realistic stars

White dwarfs

• end-of-life for low mass stars

• held up by electron degeneracy pressure

• Newtonian structure accurate to 1%

dp

dr
= −ρm

r2

• relativistic effects important on stability and pulsation for

108g cm−3 . ρc . 108.4g cm−3

Misner, Thorne, and Wheeler (1973, p. 627)
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White dwarfs

• end-of-life form of lower mass stars like our Sun is as a white dwarf

• core left over after a star loses its outer shell as a planetary nebula

• nuclear fusion has halted, and only pressure of degenerate electron gas
supports them

– Pauli exclusion principle

• structure can be described by the equation of HSE to high accuracy

• relativistic effects come into play for central densities:

– over 108g cm−3

– up until the maximum



Realistic stars

Neutron stars

• mass condensed further than white dwarf

• created in supernovae, or collapse of white dwarf

p+ + e− → n0 + ν

• held up by neutron degeneracy pressure

• matter incredibly complex and possess many unknown properties

Schutz (2009, pp. 274–275)
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Neutron stars

• when a star condenses beyond a white dwarf, it may become a neutron
star

• occurs in the aftermath of a supernova, or collapse of white dwarf

• compression beyond neutron star would form a black hole

• kinetic energy of electrons high

– allows energy release when combined with a proton
– energy carried away by neutrino, and neutron left behind

• held up by neutron degeneracy pressure – Pauli again

• matter incredibly complex

– suitable equation of state is a topic under active research



Realistic stars

Rotating stars

Metric

ds2 = −e2ν dt+ e2ψ(dφ− ω dt)2 + e2µ(dr2 + r2 dθ2),

ν, ψ, ω, and µ: functions of r and θ

• stationary

• can still assume perfect fluid to high accuracy

Stergioulas (2003, p. 8)
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Rotating stars

• much more complicated when we allow for rotation

• metric no longer static

– addition of cross terms between t and φ
– metric dependence on θ in addition to r

• metric is still stationary

• perfect fluid assumption works to high accuracy



Realistic stars

Pulsars

• rapidly rotating neutron stars

• magnetic field produces electromagnetic radiation

• pulses of radio waves observed with the right orientation

• introduction of strong magnetic field requires
• consideration of coupled Einstein–Maxwell field equations
• Tαβ includes EM energy density – non-isotropic

Misner, Thorne, and Wheeler (1973, p. 628) and Stergioulas (2003, p. 28)
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Pulsars

• pulsars are rapidly rotating neutron stars

• they have a strong magnetic field which causes emission of light

• magnetic poles may be offset from axis of rotation

• if observed from right angle, see pulses of radio light, like lighthouse

• by including a strong magnetic field, we need to

– consider the coupled Einstein–Maxwell field equations, assuming

• equilibrium
• stationary
• axisymmetric
• internal electric current

– need to include electromagnetic energy density to stress-energy
tensor

– this makes Tαβ non-isotropic
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Equations of motion

Tαβ;β = 0, Tαβ = (ρ+ p)UαUβ + pgαβ

T rβ;β = (ρ+ p)UβU r;β + grrp,r = 0

= (ρ+ p)UβUλΓrλβ + e−2Λp,r = 0

= (ρ+ p)(U0)2Γr00 + e−2Λp,r = 0

= (ρ+ p)(e−2Φ)(e−2Λe2ΦΦ,r) + e−2Λp,r = 0

−dp

dr
= (ρ+ p)

dΦ

dr

Schutz (2009, pp. 101, 261)
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