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EEE——— Spherical stars trodction

<t
Introduction 2
gl L Introduction
N
e model stars using spherical symmetry o I will model stars using GR assuming spherical symmetry
e [ will derive the Schwarzschild metric and T-O-V equation
e Schwarzschild metric e finally I will look into specific types of stars

o T-O-V equation

e real stars
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Spherical stars
I—Spherically symmetric coordinates

e First we need to derive our coordinate system



Spherically symmetric coordinates

Two-sphere in flat spacetime

General metric

ds® = —dt* + dr? + r?(d6* + sin® 0d¢?)

Schutz (2009, p. 256)
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Spherical stars
I—Spherically symmetric coordinates

I—Two—sphere in flat spacetime

e we start with the simplest spherically symmetric coordinates
— flat spacetime
e 2-sphere in Minkowski spacetime

— introduce dQ? for compactness
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I—Spherically symmetric coordinates

Two-sphere in flat spacetime

I—Two—sphere in flat spacetime

2015-12-14

e we start with the simplest spherically symmetric coordinates

General metric — flat spacetime

ds? = —dt?® + dr? + r? (d02 + sin? 9d¢2) e 2-sphere in Minkowski spacetime

— introduce dQ? for compactness
Metric on 2-sphere

di? = 72(d6? + sin? #d¢?) = r2dQ?

Schutz (2009, p. 256)
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I—Spherically symmetric coordinates

Two-sphere in curved spacetime

ar = (7, nan?

2015-12-14

I—Two—sphere in curved spacetime

e generalize to 2-sphere in arbitrary curved spherically symmetric

Metric on 2-sphere spacetime

. . 2 . !
A2 = f (7“', ) 402 e inclusion of curvature makes < some function of 7’ and ¢

Schutz (2009, pp. 256-257)
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I—Spherically symmetric coordinates

Two-sphere in curved spacetime

ar = (7, nan?

2015-12-14

I—Two—sphere in curved spacetime

e generalize to 2-sphere in arbitrary curved spherically symmetric

Metric on 2-sphere spacetime

. . 2 . !
A2 = f (7“', t) 402 e inclusion of curvature makes < some function of 7’ and ¢

fr't)=r?

Schutz (2009, pp. 256-257)
Spherical stars December 14th, 2015




Spherically symmetric coordinates Spherical stars Meaning of r

I—Spherically symmetric coordinates e

Meaning of r
I—Meaning of r

2015-12-14

. e 1 is not necessary the “distance from the center”
e not proper distance from center

it is merely a coordinate — “curvature” or “area” coordinate

for instance, we may have a spacetime where the center is missing

— example: Schwarzschild wormhole spacetime

surface of constant (r,t) is a two-sphere of area A and circumference C

Figure:

Surface with circular
symmetry but no
coordinate r = 0.

Schutz (2009, p. 257)
e e




Spherically symmetric coordinates Spherical stars Meaning of r

. £ i I—Spherlcally symmetric coordinates <
Meaning of r & >
1
1 L .
= Meaning of r
N
. e 1 is not necessary the “distance from the center”
e not proper distance from center
e it is merely a coordinate — “curvature” or “area” coordinate
« " « " . e for instance, we may have a spacetime where the center is missing
e “curvature” or “area” coordinate
o radius of curvature and area — example: Schwarzschild wormhole spacetime
o surface of constant (r,t) is a two-sphere of area A and circumference C'

Figure:

Surface with circular
symmetry but no
coordinate r = 0.

Schutz (2009, p. 257)
e e




Spherically symmetric coordinates

Meaning of r

Figure:

Surface with circular
symmetry but no
coordinate r = 0.

e not proper distance from center

e “curvature” or “area” coordinate
e radius of curvature and area

e r = const, t = const
o A=4mr?
o C'=2mr

Schutz (2009, p. 257)

Spherical stars
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Spherical stars
I—Spherically symmetric coordinates

Meaning of r

..«

I—Meaning of r

r is not necessary the “distance from the center”

it is merely a coordinate — “curvature” or “area” coordinate

for instance, we may have a spacetime where the center is missing
— example: Schwarzschild wormhole spacetime

surface of constant (r,t) is a two-sphere of area A and circumference C
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I—Spherically symmetric coordinates

Spherically symmetric spacetime

I—Spherically symmetric spacetime

2015-12-14

e now consider not only surface of 2-sphere, but whole spacetime

. e now we have some unknown and cross term
General metric 9005 Grr) Jor

e cross term go,

ds® = goo dt” + 2go, dr dt + g dr® + r*dQ” .
e cross terms go; for i € {0, ¢} are zero from symmetry

900, gor, and gy, functions of ¢ and r e need more constraints to say anything particular about them
Schutz (2000, p. 258) asl
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e now I will impose the static constraint

Static spacetimes
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L Motivation
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e we choose the constraint of a static spacetime because

— it allows us to easily derive the Schwarzschild metric

— according to Birkhoff’s theorem, this metric is the unique solution
to the Einstein vacuum field equations for spherically symmetric,
asymptotically flat spacetimes

e George David Birkhoff

e leads to simple derivation of Schwarzschild metric

Schutz (2009, p. 263) and Misner, Thorne, and Wheeler (1973, p. 843) ON
Spherical stars December 14th, 2015 9 /41




Spherical stars

. . = L_Static spacetimes
Motivation & 2
g L Motivation
N
e we choose the constraint of a static spacetime because
e leads to simple derivation of Schwarzschild metric - allovszs us to .easﬂy (,ierlve 3 Schx.;varzscl}llc.l metric . )
— according to Birkhoff’s theorem, this metric is the unique solution
to the Einstein vacuum field equations for spherically symmetric,
. . . . . totically flat ti
e unique solution to spherically symmetric, asymptotically flat FRURIPEOREEST R FEEIREE
Einstein vacuum field equations (Birkhoff’s theorem) e George David Birkhoff

Schutz (2009, p. 263) and Misner, Thorne, and Wheeler (1973, p. 843) ON
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L Definition
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A spacetime is static if we can find a time coordinate ¢ for which e
now I define “static

(i) the metric independent of ¢

first condition is that the metric is independent of time

— by itself, this condition is called “stationary”
Gap,t = 0

second condition is that metric unaffected by time reversal

e.g. rotating stars are stationary but not static

Schutz (2009, p. 258)
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Definition L_Static spacetimes .

L Definition T

2015-12-14

A spacetime is static if we can find a time coordinate ¢ for which e
now I define “static

(i) the metric independent of ¢

first condition is that the metric is independent of time

— by itself, this condition is called “stationary”
Gap,t = 0

second condition is that metric unaffected by time reversal

(ii) the geometry unchanged by time reversal e.g. rotating stars are stationary but not static

t— —t

Schutz (2009, p. 258)
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Time reversal Static spacetimes

L Time reversal
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e now I use the static constraint to simplify the metric

e transformation

— (0,0) term is d¢/d(—t)
— spatial terms are 1 if transformed to themselves
— cross-terms are all zero, as coordinates independent of each other

e transformed metric

— (0,0) term is unchanged, as —1 is squared

— (r,7) term is unchanged, as transformation is 1

— (0,7) term is negated, but must still be equal, so it’s zero
® no cross terms

Schutz (2009, p. 258)
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L Time reversal

2015-12-14

e now I use the static constraint to simplify the metric

e transformation

— (0,0) term is d¢/d(—t)
— spatial terms are 1 if transformed to themselves

Transformation — cross-terms are all zero, as coordinates independent of each other

e transformed metric

AO. — 0 — ot _ — (0,0) term is unchanged, as —1 is squared
0 0 9(—1) — (r,7) term is unchanged, as transformation is 1
) ox' — (0,7) term is negated, but must still be equal, so it’s zero
Ali = xz,i = Bl =1 ® N0 cross terms
Schutz (2009, p. 258) PON
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L Time reversal

2015-12-14

e now I use the static constraint to simplify the metric

e transformation

— (0,0) term is d¢/d(—t)
— spatial terms are 1 if transformed to themselves

Transformation Metric — cross-terms are all zero, as coordinates independent of each other

e transformed metric

AO() — 0 = ot _ Jo5 = (AO(—)) 900 = 900 - (0,0) term ‘is unchanged, as —1 is squar(?d .
Y 0(—t) 5 — (r,7) term is unchanged, as transformation is 1
) ) ox' grr = (N'5)"Grr = grr — (0,7) term is negated, but must still be equal, so it’s zero
Ali - 3:2,2 - ox’ =1 Jdor = AoﬁATFgor = —gor ® 1o cross terms
Schutz (2009, p. 258) PON
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LStatic spacetimes

The metric
I—The metric

2015-12-14

Simplified metric

2 _ 2 2, ,2102
ds® = goo dt” + gpp dr® + r7d€2 e now we simplify the metric, since the cross term is zero

e we assume ggg to be negative, and g,.- to be positive

— signature is (—,+,+,+)
— holds inside stars but not black holes

e limits at infinity tell us that spacetime is asymptotically flat

~P=A=0 = ®*=¢e=1landg=1

Schutz (2009, pp. 258-259)
Spherical stars December 14th, 2015
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LStatic spacetimes

The metric

I—The metric

2015-12-14

Simplified metric

ds? = goo dt® + g, dr? + r2dQ2

e now we simplify the metric, since the cross term is zero

Replacement e we assume ggo to be negative, and g, to be positive

— signature is (—,+,+,+)
29 2A :
goo — —€“°,  gpr — €7, provided goo < 0 < gy — holds inside stars but not black holes

e limits at infinity tell us that spacetime is asymptotically flat

~P=A=0 = ®*=¢e=1landg=1

Schutz (2009, pp. 258-259)
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Spherical stars

The metric 5 Static spacetimes —
g L-The metric
N
Simplified metric
2 _ 2 2, .2102
ds® = goo dt” + gpp dr® + r7d€2 e now we simplify the metric, since the cross term is zero

Replacement e we assume ggo to be negative, and g, to be positive

— signature is (—,+,+,+)
29 2A :
goo — —€“°,  gpr — €7, provided goo < 0 < gy — holds inside stars but not black holes

e limits at infinity tell us that spacetime is asymptotically flat

Static spherically symmetric metric

~P=A=0 = ®*=¢e=1landg=1
ds? = —€?® dt? + &2 dr? 4 r2dQ2

Schutz (2009, pp. 258-259)
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The metric 5 Static spacetimes —
g L The metric
[a\] &
Simplified metric
2 _ 2 2 2 102
ds® = goo dt” + gpp dr® + r7d€2 e now we simplify the metric, since the cross term is zero

Replacement e we assume ggo to be negative, and g, to be positive

— signature is (—,+,+,+)
29 2A :
goo — —€“°,  gpr — €7, provided goo < 0 < gy — holds inside stars but not black holes

e limits at infinity tell us that spacetime is asymptotically flat

Static spherically symmetric metric

~P=A=0 = ®*=¢e=1landg=1
ds? = —€?® dt? + &2 dr? 4 r2dQ2

lim ®&(r) = lim A(r) =0

r—00 r—00

Schutz (2009, pp. 258-259)
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Einstein Tensor 5 Static spacetimes
g L Einstein Tensor
N
General Einstein tensor
Gop = RYB _ } gapR e now we can use the metric to derive the Riemann tensor
2

e from that the Einstein tensor
e the derivation is involved, so we will just take them as is
e we're going to use some of these components later on

e note that prime denotes d/dr

Schutz (2009, pp. 165, 260)
Spherical stars December 14th, 2015




Spherical stars

: : i Static spacetimes R
Einstein Tensor 2 P
g L Einstein Tensor
N
General Einstein tensor
Gap = RYB _ % JapR e now we can use the metric to derive the Riemann tensor
e from that the Einstein tensor
Einstein tensor components e the derivation is involved, so we will just take them as is

e we're going to use some of these components later on

1 9 d —2A
GOO_T_QB 5[7'(1 e )]

L o “oAy , 2
G”‘:_T_ze (1-e )+;<I>’
Ggo = 7,2672A[(I>// + (@/)2 + (I)//T — PN — AI/T]
Gy = sin? 0Gyg

note that prime denotes d/dr

Schutz (2009, pp. 165, 260)
Spherical stars December 14th, 2015
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LStatic perfect fluid

Static perfect fluid

2015-12-14

e stars are fluids — for simplicity we assume perfect

e thus we will impose additional constraints accordingly

Static perfect fluid

Daniel Wysocki (RIT) Spherical stars December 14th, 2015 14 / 41



Static perfect fluid Spherical stars Four-velocity

. N tat fect fluid
Four-velocity § — atic perfect fui o
g I—Four—veloci‘cy
N
e static fluid, so in MCRF three-velocity components all zero
Ui =0 (static) U.0=-1 (conservation law) e we find the only non-zero term, U°, by relating to the dot product

e lower it with the metric, to use in next part

gooUU® = -1 = (U°)? = (—goo) "
—> U = (—goo)™"/*

— UO _ (e2<1>)71/2 _ 67<I>

Schutz (2009, p. 260)
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LStatic perfect fluid

Four-velocity

I—Four—veloci‘cy

2015-12-14

Ui =0 (static) U.-0=-1 (conservation law) e we find the only non-zero term, U°, by relating to the dot product

Solving for U°

gooU°U° = -1 = U° = (—goo) /2 ="

e static fluid, so in MCRF three-velocity components all zero

e lower it with the metric, to use in next part

gooUU® = -1 = (U°)? = (—goo) "
N UO _ (_900)_1/2

— UO _ (e2<1>)—1/2 _ e—<I>

Schutz (2009, p. 260)
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Static perfect fluid Spherical stars Four-velocity
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. N tat fect fluid
Four-velocity § — atic perfect fui
g I—Four-veloci‘cy
e static fluid, so in MCRF three-velocity components all zero
Ui =0 (static) U-U=-1 (conservation law) e we find the only non-zero term, U°, by relating to the dot product
e lower it with the metric, to use in next part
Solving for U°
UU% = -1 = U"=(—goo) /2 =e" -
J00 (=g00) gooUU° = =1 = (U°)? = (—goo) "

Solving for Uy = U% = (—goo)™"/?

— UO _ (e2<1>)—1/2 _ e—<I>
Up = gooU® = —e®

Schutz (2009, p. 260)
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LStatic perfect fluid

Stress—energy tensor

I—Stress—energy tensor

2015-12-14

Stress-energy tensor for perfect fluid

Top = (p+P)UaUs + pgas

T;o. = PYio, because spatial components of U are zero

Twp is diagonal because of previous condition and g.g is diagonal

Too requires a little algebra

T;; just need to multiply metric by p

T can be written in terms of Tpg

Schutz (2009, p. 260)
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= L-Static perfect fluid
Stress—energy tensor 2 Atie pertect i
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
Components of 7T,
o Thy roquires a little algebra
- e T, just need to multiply metric by p
ia = PYia Too Tor Too Too e T, can be written in terms of Tpyg

Schutz (2009, p. 260)
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= L-Static perfect fluid
Stress—energy tensor 2 Atie pertect i
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
Components of 7T,
o Thy roquires a little algebra
- - 0 e T, just need to multiply metric by p
1o = Plia ‘ Tow Mo Top T o Ty4s can be written in terms of Tyg

Schutz (2009, p. 260)
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3, LStatic perfect fluid
Stress—energy tensor a
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
Comtpoiuguty off oy e Ty requires a little algebra
o T;; just need to multiply metric by p
Tio = Pgia = Tio =0
“ . p.gm 0 T To. Toa T o Ty4s can be written in terms of Tyg
T, p is diagonal 00 Lor Loo Log

Schutz (2009, p. 260)
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3, LStatic perfect fluid
Stress—energy tensor a
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
Comtpoiuguty off oy e Ty requires a little algebra
o T;; just need to multiply metric by p
Tio = Pgia = Tio =0
“ . p.gm 0 T To. Toa T o Ty4s can be written in terms of Tyg
T, p is diagonal 00 Lor Lo Log

T, T, T, T,
Too = (p +p)62(1> +p(_62<I>) _ p62<1> r0 rr r0 ré

Schutz (2009, p. 260)
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N tat fect fluid
Stress—energy tensor § atic perfect fui
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
C ts of T,
« Thy requires o little slgebra
- - 0 e T, just need to multiply metric by p
i = PGia = 1Li0 = . .
T,s is diagonal Too Tor Too Thg o Ty4s can be written in terms of Tyg
e e T T
Too = (p+p)e® + p(—€*®) = pe*? o

Ly =p62A T¢0 Tqbr T¢9 T¢¢

Schutz (2009, p. 260)
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N tat fect fluid
Stress—energy tensor § atic perfect fui
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
C ts of T,
« Thy requires o little slgebra
- - 0 e T, just need to multiply metric by p
i = PGia = 1Li0 = . .
T,s is diagonal Too Tor Too Thg o Ty4s can be written in terms of Tyg
e e T T
Too = (p+p)e® + p(—€*®) = pe*? o

Tir = p62A7 The = p?‘2 Too Tor Toe Tyg

Schutz (2009, p. 260)
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N tat fect fluid
Stress—energy tensor § atic perfect fui
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
C ts of T,
« Thy requires o little slgebra
- - 0 e T, just need to multiply metric by p
i = PGia = 1Li0 = . .
T,s is diagonal Too Tor Too Thg o Ty4s can be written in terms of Tyg
e e T T
Too = (p+p)e® + p(—€*®) = pe*? o

Tir = p62A7 The = p?‘2 Too Tor Toe Tog
T¢¢ = p?"2 sin2 0

Schutz (2009, p. 260)
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N tat fect fluid
Stress—energy tensor § atic perfect fui
g I—Stress—energy tensor
N
Stress-energy tensor for perfect fluid
Top = (p+p) UaUp + pgap e T;, = pgin because spatial components of U are zero
o T,z is diagonal because of previous condition and g,s is diagonal
C ts of T,
« Thy requires o little slgebra
- - 0 e T, just need to multiply metric by p
i = PGia = 1Li0 = . .
T,s is diagonal Too Tor Too Thg o Ty4s can be written in terms of Tyg
e e T T
Too = (p+p)e® + p(—€*®) = pe*? o

Tir = p62A7 The = p?‘2 Too Tor Toe Tog
Tyy = pr2sin? @ = Tygsin® 0

Schutz (2009, p. 260)
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i L_Static perfect fluid
Equation of state Static perfect flui

I—Equa‘uion of state

2015-12-14

. Sy e in a static fluid we have local thermodynamic equilibrium
Local thermodynamic equilibrium v e

e pressure a function of density and specific entropy
— S =
p=p(p,5) ~ plp) e specific entropy assumed negligibly small

e pressure related to energy density and specific entropy

e we often deal with negligibly small entropies

Schutz (2009, p. 261)
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LStatic perfect fluid

Equations of motion

2015-12-14

I—Equa‘uions of motion

Conservation of 4-momentum

Taﬁ,ﬁ -0

first equation follows from conservation of 4-momentum

due to symmetry, the only non-trivial solution is for oo = r

equation of motion for static perfect fluid

(derivation in bonus slides)

Schutz (2009, pp. 175, 261)
Spherical stars December 14th, 2015
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Equations of motion 5 Static perfect fluid
g I—Equa‘uions of motion
N
Conservation of 4-momentum e first equation follows from conservation of 4-momentum
TafB_ —0 e due to symmetry, the only non-trivial solution is for a = r

equation of motion for static perfect fluid

e symmetries make only non-trivial solution o = r

(derivation in bonus slides)

Schutz (2009, pp. 175, 261)
Spherical stars December 14th, 2015
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LStatic perfect fluid

Equations of motion

I—Equa‘cions of motion

2015-12-14

Conservation of 4-momentum

e first equation follows from conservation of 4-momentum
Tafj’. ' 0 e due to symmetry, the only non-trivial solution is for oo = r
7 e equation of motion for static perfect fluid
e symmetries make only non-trivial solution o = r e (derivation in bonus slides)

Equation of motion
d®  dp

(p+p)5 =3

Schutz (2009, pp. 175, 261)
Spherical stars December 14th, 2015
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. L_Static perfect fluid
Mass function atic perfect flui

LMass function

2015-12-14

Einstein field equations

Goo = 8mTo

inspect (0,0) component of Einstein equations

define the mass function, m(r)

in Newtonian limit, m(r) is mass within radius r

m(r) = 4m /Or(r')zp(r') dr’

e doesn’t work in GR, because total energy is not localizable

Schutz (2009, pp. 260-262)
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Static perfect fluid

Mass function

Einstein field equations

1 d
Goo = 8Ty = ﬁew@[r(l — e72M)] = 8mpe??®

Schutz (2009, pp. 260-262)
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Spherical stars

LStatic perfect fluid Pem——

LMass function

inspect (0,0) component of Einstein equations

define the mass function, m(r)

in Newtonian limit, m(r) is mass within radius r

m(r) = 4m /Or(r')zp(r') dr’

e doesn’t work in GR, because total energy is not localizable



Static perfect fluid

Mass function

Einstein field equations

1 d
Goo = 81Ty — T—Qew&[r(l = e_QA)] = 8mpe??®

Schutz (2009, pp. 260-262)
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Spherical stars

LStatic perfect fluid 80— -2

LMass function

inspect (0,0) component of Einstein equations
define the mass function, m(r)

in Newtonian limit, m(r) is mass within radius r

m(r) = 4m /Or(r')zp(r') dr’

doesn’t work in GR, because total energy is not localizable



Static perfect fluid

Mass function

Einstein field equations

1 d
Goo = 81y = T—Qeﬂ)@[r(l — e )] = 8rpe??®

m(r)
1 2 -
m(r)=Zr(l—e ) or g, =¥ = (1 - m(r))
2 r
Relation to energy density
d
m(r) = 4mr?p
dr

=

Schutz (2009, pp. 260-262)
Spherical stars December 14th, 2015
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Spherical stars

LStatic perfect fluid Go=sita — o

LMass function

inspect (0,0) component of Einstein equations

define the mass function, m(r)

in Newtonian limit, m(r) is mass within radius r

m(r) = 4m /Or(r')zp(r') dr’

e doesn’t work in GR, because total energy is not localizable



Sﬁheﬁcal stars
Static perfect fluid
P (r) P

—a(r)

2015-12-14

Einstein field equations e inspect (r,7) component of Einstein equations

e gives us an expression for ®(r)

Gy = 87T,

Schutz (2009, pp. 260-262)
Spherical stars December 14th, 2015




Sﬁheﬁcal stars
Static perfect fluid
P (r) P

2015-12-14

—a(r)

Einstein field equations e inspect (r,7) component of Einstein equations

G — 8T —s _ ie%(l - e_QA) + gq), B 87Tp€2A e gives us an expression for ®(r)
rr — rr 9 -
r r

Schutz (2009, pp. 260-262)
Spherical stars December 14th, 2015
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Static perfect fluid —
P (r) P
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—a(r)

Einstein field equations e inspect (r,7) component of Einstein equations

G — 87T, — — ie%(l - 6_2A) n gcp’ B 87Tp62A e gives us an expression for ®(r)
rr — rr 9 -
r r

d®(r) m(r)+4nrdp

dr  rlr—2m(r)]

Schutz (2009, pp. 260-262)
Spherical stars December 14th, 2015




Spherical stars

L Exterior Geometry

Exterior Geometry

2015-12-14

e until now, we’ve not considered whether we were inside or outside star

. e properties inside different than outside (obviously)
Exterior Geometry o _ o .
e we're going to inspect both cases, starting with outside

Daniel Wysocki (RIT) Spherical stars ember 14th, 2015



. . = L_Exterior Geometr
Schwarzschild metric I & i
g L Schwarzschild metric I
N
o the etarnal conditions just state we arelin & vacuum
p=p=0 — breaks down when matter surrounds star

e m(r) is constant, we call it M

e d®/dr simplifies, and we can now integrate it to find ®(r)

Schutz (2009, pp. 262-263)
Spherical stars December 14th, 2015
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L_Schwarzschild metric T
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p=p=0 — breaks down when matter surrounds star

" i) s constant, we call i€ Af
1€T

e d®/dr simplifies, and we can now integrate it to find ®(r)

e the external conditions just state we are in a vacuum

dm(r)
dr

=dnr?p =0

Schutz (2009, pp. 262-263)
Spherical stars December 14th, 2015
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Schwarzschild metric I xberior Leometty

L_Schwarzschild metric T

2015-12-14

p=p=0 — breaks down when matter surrounds star

" i) s constant, we call i€ Af
1€T

e d®/dr simplifies, and we can now integrate it to find ®(r)

e the external conditions just state we are in a vacuum

dm(r)
dr

=4nrip =0 m(r) =M

Schutz (2009, pp. 262-263)
Spherical stars December 14th, 2015
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L_Schwarzschild metric T
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p=p=0 — breaks down when matter surrounds star

" yolr) i constant, we call it A
1€T

e d®/dr simplifies, and we can now integrate it to find ®(r)

e the external conditions just state we are in a vacuum

dm(r)
dr
d®(r)  m(r)+4mrip M
dr — rlr—2m(r)]  r(r—2M)

M

=4rr2p =10 m(r)

Schutz (2009, pp. 262-263)
Spherical stars December 14th, 2015
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Schwarzschild metric 1 xterior Laeometty

L_Schwarzschild metric T

2015-12-14

p=p=0 — breaks down when matter surrounds star

" yolr) i constant, we call it A
1€T

e d®/dr simplifies, and we can now integrate it to find ®(r)

e the external conditions just state we are in a vacuum

dn(;(f) =4nrip =0 m(r) =M
d®(r)  m(r)+4mrip M » = 1 o _2M
dr r[r — 2m(r)] _r(r—2M) = )_21 g(l )

Schutz (2009, pp. 262-263)
Spherical stars December 14th, 2015
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Schwarzschild metric 11 Exterior Geometry

L—Schwarzschild metric I

2015-12-14

First two metric components e recall g, from earlier

e substituting our expression from ®(r) into —e?® gives goo

-1
Grr = e2A — (1 — %> e we have found the Schwarzschild metric!

Schutz (2009, pp. 258, 262-263)
Spherical stars December 14th, 2015
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Schwarzschild metric 11 Exterior Geometry

L—Schwarzschild metric I

2015-12-14

First two metric components e recall g, from earlier

e substituting our expression from ®(r) into —e?® gives goo

-1
Grr = e2A — (1 — %> goo = —e2® — _ (1 — ﬂ) e we have found the Schwarzschild metric!

Schutz (2009, pp. 258, 262-263)
Spherical stars December 14th, 2015
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L-Schwarzschild metric 1T e B (1 20)
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First two metric components e recall g, from earlier

e substituting our expression from ®(r) into —e?® gives goo

-1
Grr = e2A — (1 — %> goo = —e2® — _ (1 — ﬂ) e we have found the Schwarzschild metric!
7

Schwarzschild metric

=1l
ds® = —(1 - %) dt® + (1 - ¥) dr? + r* dQ?

Schutz (2009, pp. 258, 262-263)
Spherical stars December 14th, 2015




Spherical stars

' L Exterior Geomet
Far-field metric xterior Geometry

r> M

L Far-field metric

2015-12-14

far-field metric of a star (far away)

consider m(r) to be total mass M

can use Taylor expansion, and to first order rewrite as such

we can define a new coordinate R, the distance from the star

— Cartesian coordinates

Schutz (2009, pp. 263)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015




Spherical stars

L Exterior Geometry

Far-field metric

r> M

L Far-field metric

2015-12-14

o far-field metric of a star (far away)
Schwarzschild metric e consider m(r) to be total mass M
2 2M 2 2M\ ™ 2 1 ..2302 Tayl i d to fi d i h
ds?=_ [1— a2+ (1 - dr? + r2dQ o can use Taylor expansion, and to first order rewrite as suc
" " e we can define a new coordinate R, the distance from the star

— Cartesian coordinates

Schutz (2009, pp. 263)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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Spherical stars

L Exterior Geometry

Far-field metric

r> M

L Far-field metric

2015-12-14

o far-field metric of a star (far away)
Far-field Schwarzschild metric o el ) e e daal mess 10
2 2M 2 2M 2 2 102 Tayl i d to fi d i h
ds?a— [1—- 222 ) de2+ (14 2= dr? +r2dQ e can use Taylor expansion, and to first order rewrite as suc
" " e we can define a new coordinate R, the distance from the star

— Cartesian coordinates

Schutz (2009, pp. 263)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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Spherical stars

Far-field metric i L Exterior Geometry
gl L Far-field metric
2
r>M
o far-field metric of a star (far away)
Far-field Schwarzschild metric e consider m(r) to be total mass M
ds? ~ — (1 — ﬂ) de? + <1 + %) dr? + r2 402 e can use Taylor expansion, and to first order rewrite as such
" " e we can define a new coordinate R, the distance from the star
Far-field Schwarzschild metric (Cartesian) — Cartesian coordinates
2M 2M
ds? ~ — (1 — f) dt? + (1 + ?) (dz? + dy? + d2?)

R2EI2+y2+Z2

Schutz (2009, pp. 263)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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I—Intelrior structure
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e now we look at the remaining, and most interesting regime

— inside the star

Interior structure ' '
e our assumptions from outside the star no longer hold

Daniel Wysocki (RIT) Spherical stars ember 14th, 2015
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I—Intelrior structure

Tolman—Oppenheimer—Volkov (T-O-V) equation

2015-12-14

L-Tolman-Oppenheimer-Volkov (T-0-V)
equation

p#0 p#0

e inside a star, we cannot assume density and pressure are zero
e revisit two earlier equations

e substitute one into the other

e arrive at the T-O-V equation

e gives us an ODE relating

— pressure p
— density p

— mass function m(r)
radius r

e eventually hope to solve all quantities in terms of r

Schutz (2009, pp. 261-264)
Spherical stars December 14th, 2015
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Interior structure Spherical stars Tolman-Oppenheimer-Volkov (T-O-V) equation

I—Interior structure

Tolman—Oppenheimer—Volkov (T-O-V) equation

2015-12-14

L Tolman-Oppenheimer-Volkov (T-0-V)
equation

p#0 p#0
e revisit two earlier equations

e substitute one into the other

@ _ @ e arrive at the T-O-V equation
dr dr

e inside a star, we cannot assume density and pressure are zero

(p+p)
e gives us an ODE relating

— pressure p
density p

mass function m(r)
radius r

e eventually hope to solve all quantities in terms of r

Schutz (2009, pp. 261-264)
Spherical stars December 14th, 2015
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I—Interior structure

Tolman—Oppenheimer—Volkov (T-O-V) equation

2015-12-14

L Tolman-Oppenheimer-Volkov (T-0-V)
equation

p#0 p#0
e revisit two earlier equations

e substitute one into the other

(p+p) @ _ @ @ _ m(r) + 4mrdp e arrive at the T-O-V equation
pTp dr dr dr rir —2m(r)]

e inside a star, we cannot assume density and pressure are zero

e gives us an ODE relating

— pressure p
density p

mass function m(r)
radius r

e eventually hope to solve all quantities in terms of r

Schutz (2009, pp. 261-264)
Spherical stars December 14th, 2015




Interior structure Spherical stars Tolman-Oppenheimer-Volkov (T-O-V) equation

I—Interior structure

Tolman—Oppenheimer—Volkov (T-O-V) equation

L Tolman-Oppenheimer-Volkov (T-0-V)
equation

2015-12-14

p#0 p#0
e revisit two earlier equations

e substitute one into the other

(p+p) @ _ @ @ _ m(r) + 4mrdp e arrive at the T-O-V equation
pTp dr dr dr rir —2m(r)]

e inside a star, we cannot assume density and pressure are zero

e gives us an ODE relating

T-O-V equation — pressure p

— density p
dp _ (p+p)m(r)+ 4rrop| — mass function m(r)
dr r[r —2m(r)] — radius r

e eventually hope to solve all quantities in terms of r

Schutz (2009, pp. 261-264)
Spherical stars December 14th, 2015




Interior structure Spherical stars System of coupled diffeential equations
-0V oqion
o __(p+pimir) +drr’p
T

. . . Interior struct
System of coupled differential equations HECHOT ST

2015-12-14

I—Sys‘cem of coupled differential equations

T-0-V equation
dp (p+ p)[m(r) + 4mr3p| e T-O-V equation coupled with dm/dr and p(p)

o T — 2m(r)] — 3 equations
— 3 unknowns (m, p, p)

Mass function — ®(r) only intermediate variable

e can integrate to find m(r), p(r), and p(r)

d
Tgir) = dnr?p
p=p(p)

Schutz (2009, pp. 261-262, 264)
Spherical stars December 14th, 2015




I—Intelrior structure

Newtonian hydrostatic equilibrium

L Newtonian hydrostatic equilibrium

2015-12-14

Newtonian limit e in the Newtonian limit we get these constraints

. e which allow us to cancel terms in the T-O—-V equation
pLp; Amrip<Lm; m<Lr
e and arrive at the familiar equation of HSE

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)
Spherical stars December 14th, 2015
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Newtonian hydrostatic equilibrium

L Newtonian hydrostatic equilibrium

2015-12-14

Newtonian limit e in the Newtonian limit we get these constraints

. e which allow us to cancel terms in the T-O—-V equation
pLp; Amrip<Lm; m<Lr

Equation of hydrostatic equilibrium

dp _ (p+p)m(r) +4mr’p]

e and arrive at the familiar equation of HSE

dr r[r —2m(r)]

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)
Spherical stars December 14th, 2015




I—Interior structure

Newtonian hydrostatic equilibrium

L Newtonian hydrostatic equilibrium

2015-12-14

Newtonian limit e in the Newtonian limit we get these constraints

. e which allow us to cancel terms in the T-O—-V equation
pLp; Amrip<Lm; m<Lr

Equation of hydrostatic equilibrium

dp _ (p+p)m(r) +4mr’p] _ pm(r)
dr r[r — 2m(r)] 72

e and arrive at the familiar equation of HSE

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)
Spherical stars December 14th, 2015




I—Intelrior structure

Constant density solution I
L Constant density solution I

2015-12-14

s nplest case, we are going to fvestigate & star of
S uniform deunsity, p(r) = po

p(r) = po — this is unphysical
— for instance, the speed of sound in such a star is infinite
— neutron star density is almost uniform
— also leads us to a result which holds for all stellar densities

e casy to obtain mass function from earlier differential equation

— equal to the density times the volume of the sphere enclosed by
radius r inside

— equal to the density times the volume of the entire star (r = R)
when outside

— continuous at the boundary

Schutz (2009, pp. 266-267)
Spherical stars December 14th, 2015




I—Intelrior structure

Constant density solution I

L Constant density solution I

2015-12-14

0 IVERE I W 0 VARG €25, T79 SR GG 19 PRGN & i o
 —— uniform deunsity, p(r) = po
p(r) = po — this is unphysical
— for instance, the speed of sound in such a star is infinite

Mass function — neutron star density is almost uniform

— also leads us to a result which holds for all stellar densities
e casy to obtain mass function from earlier differential equation

— equal to the density times the volume of the sphere enclosed by
radius r inside

— equal to the density times the volume of the entire star (r = R)
when outside

— continuous at the boundary

Schutz (2009, pp. 266-267)
Spherical stars December 14th, 2015




I—Intelrior structure

Constant density solution II

L Constant density solution IT

2015-12-14

T-O-V equation o recall the T-O-V equation, which describes the interior of the star

dp (p + p)(m + 47r3p) e we can substitute m(r) for r < R, to simplify it as shown

dr r(r —2m) e this gives us a separable differential equation

e we integrate the differential equation from the center (r =0, p = p.) to
some radius (r =r, p = p)

e to simplify the expression again, we’ve re-written it in terms of m(r)

e now we have a relation between pg, p, and m(r) at a given r

Schutz (2009, pp. 264, 266-267)
Spherical stars December 14th, 2015 30 / 41




I—Intelrior structure

Constant density solution II

L Constant density solution IT

2015-12-14

T-O-V equation o recall the T-O-V equation, which describes the interior of the star

dp  (p+p)m+ 47r3p) —éﬁr (po + p)(po + 3p) e we can substitute m(r) for » < R, to simplify it as shown

dr r(r —2m) 3 1-— %T‘Q P0 e this gives us a separable differential equation

e we integrate the differential equation from the center (r =0, p = p.) to
some radius (r =r, p = p)

e to simplify the expression again, we’ve re-written it in terms of m(r)

e now we have a relation between pg, p, and m(r) at a given r

Schutz (2009, pp. 264, 266-267)
Spherical stars December 14th, 2015 30 / 41




I—Interior structure

Constant density solution II

L Constant density solution IT

2015-12-14

T-O-V equation o recall the T-O-V equation, which describes the interior of the star

@ B (p+p)(m+ 47”,3])) _éﬂ (po + p)(po + 3p) e we can substitute m(r) for r < R, to simplify it as shown

dr r(r —2m) 3 = %TQ P0 e this gives us a separable differential equation

e we integrate the differential equation from the center (r =0, p = p.) to

Integrated from center to internal radius r some paiius (7 =7, P =7

e to simplify the expression again, we’ve re-written it in terms of m(r)

po+3p  po+3pc 7
po+p N P0 + De il =27 e now we have a relation between pg, p, and m(r) at a given r

Schutz (2009, pp. 264, 266-267)
Spherical stars December 14th, 2015




: 0 = LInterior structure Y 7Ry
Constant density solution III 2 -l (228)]
gl L Constant density solution III
x
R2:3[1_<p0+pc>2] e at the surface, r = R and p = 0
8T po Po + 3pe e can solve the previous equation for R

e from this, we can solve for p,
— this gives us an expression for the central pressure necessary

e we can see that this blows up when M/R = 4/9
3v/1-8/9-1=3y/1/9-1=1-0=0

e radius cannot be smaller than (9/4) M
— less than the 20 needed for a black hole

e Buchdahl’s theorem states that this is true in general for all stars

Schutz (2009, pp. 266-267, 269)

— not just p(r) = po
Daniel Wysocki (RIT) Spherical stars December 14th, 2015 31 /41
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: : = LInterior structure
Constant density solution III &
gl L Constant density solution III
N
32=i[1_<p0+pc>2] e at the surface, r = R and p =10
87 po po + 3pe e can solve the previous equation for R

e from this, we can solve for p,

Central pressure . .
D De — this gives us an expression for the central pressure necessary

1 -1 -2M/R e we can see that this blows up when M/R = 4/9

3v/1-2M/R—1
3y/1—-8/9-1=3/1/9-1=1-0=0

e radius cannot be smaller than (9/4)M
— less than the 20/ needed for a black hole

Pc = pPo

e Buchdahl’s theorem states that this is true in general for all stars

Schutz (2009, pp. 266-267, 269) — not just p(r) = po
Spherical stars December 14th, 2015 31/
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: : = LInterior structure
Constant density solution III &
gl L Constant density solution III
N I
32=i[1_<p0+pc>2] e at the surface, r = R and p = 0
87 po po + 3pe e can solve the previous equation for R

e from this, we can solve for p,

Central pressure L .
D De — this gives us an expression for the central pressure necessary

1 -1 -2M/R e we can see that this blows up when M/R = 4/9
3v/1-2M/R—-1
3v/1-8/9-1=3y/1/9-1=1-0=0

e radius cannot be smaller than (9/4)M

Pc = pPo

Limit on M/R

M/R —4/9 = p. — o0 — less than the 20/ needed for a black hole
= e Buchdahl’s theorem states that this is true in general for all stars
Schutz (2009, pp. 266-267, 269) ol ~ not just p(r) = po

Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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Buchdahl’s theorem HEEHOT SETHCHUTE
L_Buchdahl’s theorem

2015-12-14

o even for non-constant density, M/R < 4/9 e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

— if we assume there is a maximum sustainable density in nature
— and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

— all other objects would need to have a lower density

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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L_Buchdahl’s theorem
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o even for non-constant density, M/R < 4/9 e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

— if we assume there is a maximum sustainable density in nature
— and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

— all other objects would need to have a lower density

e intuitive explanation:

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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L_Buchdahl’s theorem

2015-12-14

o even for non-constant density, M/R < 4/9 e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

— if we assume there is a maximum sustainable density in nature
— and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

— all other objects would need to have a lower density

e intuitive explanation:
e assume there is a maximum sustainable density, (M/R)max

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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L_Buchdahl’s theorem

2015-12-14

o even for non-constant density, M/R < 4/9 e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

— if we assume there is a maximum sustainable density in nature
— and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

— all other objects would need to have a lower density

e intuitive explanation:

e assume there is a maximum sustainable density, (M/R)max
e consider an object of radius R

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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L_Buchdahl’s theorem

2015-12-14

o even for non-constant density, M/R < 4/9 e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

— if we assume there is a maximum sustainable density in nature
— and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

— all other objects would need to have a lower density

e intuitive explanation:
e assume there is a maximum sustainable density, (M/R)max
e consider an object of radius R
e most massive possible object would have maximum density
everywhere

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015




Buchdahl’s theorem

e even for non-constant density, M/R < 4/9

e intuitive explanation:
e assume there is a maximum sustainable density, (M/R)max
e consider an object of radius R
e most massive possible object would have maximum density
everywhere
e all other sustainable objects have a lower M /R

Carroll (2004, pp. 234)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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Spherical stars
L Interior structure

L_Buchdahl’s theorem

Buchdahl's theorem

e restate M/R < 4/9 from Buchdahl’s theorem

e give Carroll’s intuitive explanation

if we assume there is a maximum sustainable density in nature
and we consider an object which fills a sphere with radius R
then the most massive possible object within that volume would
have a uniform density

all other objects would need to have a lower density
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Spherical stars

L_Realistic stars

Realistic stars

2015-12-14

e now we're going to have a brief overview of real stars

Realistic stars

Daniel Wysocki (RIT) Spherical stars nber 14th, 2015
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White dwarfs

e end-of-life for low mass stars

e held up by electron degeneracy pressure

e Newtonian structure accurate to 1%

dp  pm
dr — r2

e relativistic effects important on stability and pulsation for

10%gem ™ < p, < 10%4gcm™3

Misner, Thorne, and Wheeler (1973, p. 627) O

December 14th, 2015

Spherical stars

2015-12-14

White dwarfs

Spherical stars
L_Realistic stars

L White dwarfs

e end-of-life form of lower mass stars like our Sun is as a white dwarf
e core left over after a star loses its outer shell as a planetary nebula

e nuclear fusion has halted, and only pressure of degenerate electron gas
supports them

— Pauli exclusion principle
e structure can be described by the equation of HSE to high accuracy
e relativistic effects come into play for central densities:

— over 108gcm™3

— up until the maximum



Realistic st i
Spherical stars

= Realistic stars
Neutron stars &
g L-Neutron stars
N
e mass condensed further than white dwarf
e when a star condenses beyond a white dwarf, it may become a neutron
star
e created in supernovae, or collapse of white dwarf e occurs in the aftermath of a supernova, or collapse of white dwarf
pT+e »n+v e compression beyond neutron star would form a black hole

e kinetic energy of electrons high

— allows energy release when combined with a proton

e held up by neutron degeneracy pressure
P by & Y P — energy carried away by neutrino, and neutron left behind

e held up by neutron degeneracy pressure — Pauli again

e matter incredibly complex and possess many unknown properties e matter incredibly complex

— suitable equation of state is a topic under active research

Schutz (2009, pp. 274-275)
Spherical stars December 14th, 2015




Realistic stars . otating stars
Spherical stars —

' L Realistic st
Rotatlng stars Realistic stars

I—Rotating stars

2015-12-14

e much more complicated when we allow for rotation

ds® = —¢* dt + ¢*(dg — wdt)® + eH(dr® + 1% d6°),

metric no longer static

— addition of cross terms between ¢ and ¢

v, ¥, w, and p: functions of r and 6 — metric dependence on 6 in addition to 7

e stationary e metric is still stationary

perfect fluid assumption works to high accuracy

e can still assume perfect fluid to high accuracy

Stergioulas (2003, p. 8)
Daniel Wysocki (RIT) Spherical stars December 14th, 2015
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Spherical stars :

3, L_Realistic stars
Pulsars 2
g L-Pulsars
N
e rapidly rotating neutron stars
e pulsars are rapidly rotating neutron stars
. . Lo e they have a strong magnetic field which causes emission of light
e magnetic field produces electromagnetic radiation
e magnetic poles may be offset from axis of rotation
) ) ) ) ) o if observed from right angle, see pulses of radio light, like lighthouse
e pulses of radio waves observed with the right orientation
e by including a strong magnetic field, we need to
— consider the coupled Einstein-Maxwell field equations, assuming
e introduction of strong magnetic field requires e equilibrium
e consideration of coupled Einstein—Maxwell field equations e stationary
o T,p includes EM energy density — non-isotropic ® axisymmetric
e internal electric current
— need to include electromagnetic energy density to stress-energy
tensor
Misner, Thorne, and Wheeler (1973, p. 628) and Stergioulas (2003, p. 28) O ~ this makes Tj,3 non-isotropic

Daniel Wysocki (RIT) Spherical stars December 14th, 2015



Refer 5 i
Spherical stars

References

References

2015-12-14

e You made it to the end!
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T, =0, T = (p+p)U°U? + pg*”
p+p)UU 5 + 9" pr =0
p+p)UPUT 5+ e p, =0

Trﬂgz( )
=(p+p)
=(p+p)
=(p+p)

dp

—q, = (ptp)

(UO)QFTOO + 6_2Ap77» -0
p-l-p (6_2¢)(6_2A62®q)7r) + 6_2Ap,r -0
n do
pTp dr

Schutz (2009, pp. 101, 261)
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