\author{

}
\qquad

Abstract

\qquad

 ,正

-
 \square

Introduction

- model stars using spherical symmetry
- Schwarzschild metric
- $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- real stars

Spherical stars

- I will model stars using GR assuming spherical symmetry
- I will derive the Schwarzschild metric and T-O-V equation
- finally I will look into specific types of stars

Spherically symmetric coordinates

Spherically symmetric coordinates

20．2．
－First we need to derive our coordinate system
F

Spherically symmetric coordinates	

\qquad
 2

Spherically symmetric coordinates

地

Spherically symmetric coordinates
\qquad
\qquad
\qquad
\qquad
\qquad
hovicollw atmmotric o
\qquad

 dinates號

 ． －

Two-sphere in flat spacetime

General metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Spherical stars

- we start with the simplest spherically symmetric coordinates
- flat spacetime
- 2-sphere in Minkowski spacetime
- introduce $\mathrm{d} \Omega^{2}$ for compactness

Two-sphere in flat spacetime

Spherical stars
 -Spherically symmetric coordinates
-Two-sphere in flat spacetime

- we start with the simplest spherically symmetric coordinates
- flat spacetime
- 2-sphere in Minkowski spacetime
- introduce $\mathrm{d} \Omega^{2}$ for compactness

Metric on 2-sphere

$$
\mathrm{d} l^{2}=r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \equiv r^{2} \mathrm{~d} \Omega^{2}
$$

Two-sphere in curved spacetime

Metric on 2-sphere

$$
\mathrm{d} l^{2}=f\left(r^{\prime}, t\right) \mathrm{d} \Omega^{2}
$$

- generalize to 2 -sphere in arbitrary curved spherically symmetric spacetime
- inclusion of curvature makes r^{2} some function of r^{\prime} and t

LTwo-sphere in curved spacetime

Two-sphere in curved spacetime

Metric on 2-sphere

$$
\mathrm{d} l^{2}=f\left(r^{\prime}, t\right) \mathrm{d} \Omega^{2}
$$

Relation to r
 $$
f\left(r^{\prime}, t\right) \equiv r^{2}
$$

- generalize to 2 -sphere in arbitrary curved spherically symmetric spacetime
- inclusion of curvature makes r^{2} some function of r^{\prime} and t

Spherical stars

Meaning of r

Figure:
Surface with circular symmetry but no coordinate $r=0$.

- not proper distance from center

Spherical stars

- r is not necessary the "distance from the center"
- it is merely a coordinate - "curvature" or "area" coordinate
- for instance, we may have a spacetime where the center is missing - example: Schwarzschild wormhole spacetime
- surface of constant (r, t) is a two-sphere of area A and circumference C

Figure:
Surface with circular symmetry but no coordinate $r=0$.

- not proper distance from center
- "curvature" or "area" coordinate
- radius of curvature and area
- r is not necessary the "distance from the center"
- it is merely a coordinate - "curvature" or "area" coordinate
- for instance, we may have a spacetime where the center is missing - example: Schwarzschild wormhole spacetime
- surface of constant (r, t) is a two-sphere of area A and circumference C

Figure:
Surface with circular symmetry but no coordinate $r=0$.

- not proper distance from center
- "curvature" or "area" coordinate
- radius of curvature and area
- $r=$ const, $t=$ const
- $A=4 \pi r^{2}$
- $C=2 \pi r$
- r is not necessary the "distance from the center"
- it is merely a coordinate - "curvature" or "area" coordinate
- for instance, we may have a spacetime where the center is missing - example: Schwarzschild wormhole spacetime
- surface of constant (r, t) is a two-sphere of area A and circumference C
General metric

$$
\begin{gathered}
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+2 g_{0 r} \mathrm{~d} r \mathrm{~d} t+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2} \\
g_{00}, g_{0 r}, \text { and } g_{r r}: \text { functions of } t \text { and } r
\end{gathered}
$$

- now consider not only surface of 2 -sphere, but whole spacetime
- now we have some unknown $g_{00}, g_{r r}$, and cross term $g_{0 r}$
- cross term $g_{0 r}$
- cross terms $g_{0 i}$ for $i \in\{\theta, \phi\}$ are zero from symmetry
- need more constraints to say anything particular about them

General metric

Spherically symmetric spacetime

$\square_{\text {Spherically symmetric coordinates }}$
 $\left\llcorner_{\text {Spherically symmetric spacetime }}\right.$

 都

 ．
 －

－now I will impose the static constraint
－now I will impose the static constraint

St （20
－

\square －震
\qquad
\qquad
\qquad

- we choose the constraint of a static spacetime because
- it allows us to easily derive the Schwarzschild metric
- according to Birkhoff's theorem, this metric is the unique solution to the Einstein vacuum field equations for spherically symmetric, asymptotically flat spacetimes
- George David Birkhoff

Motivation

- leads to simple derivation of Schwarzschild metric
\qquad
Einstein vacuum field equations (Birkhoff's theorem)
- we choose the constraint of a static spacetime because
- it allows us to easily derive the Schwarzschild metric
- according to Birkhoff's theorem, this metric is the unique solution to the Einstein vacuum field equations for spherically symmetric, asymptotically flat spacetimes
- unique solution to spherically symmetric, asymptotically flat Einstein vacuum field equations (Birkhoff's theorem)

Definition

\llcorner Definition

- now I define "static"
- first condition is that the metric is independent of time
- by itself, this condition is called "stationary"
- second condition is that metric unaffected by time reversal
- e.g. rotating stars are stationary but not static
,
\square Definition
- now I define "static"
- first condition is that the metric is independent of time
- by itself, this condition is called "stationary"
- second condition is that metric unaffected by time reversal
- e.g. rotating stars are stationary but not static
(ii) the geometry unchanged by time reversal

$$
t \rightarrow-t
$$

Definition

$$
g_{\alpha \beta, t}=0
$$

Time reversal

$$
\begin{gathered}
\boldsymbol{\Lambda}:(t, x, y, z) \rightarrow(-t, x, y, z) \\
g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{gathered}
$$

- now I use the static constraint to simplify the metric
- transformation
$-(0,0)$ term is $\mathrm{d} t / \mathrm{d}(-t)$
- spatial terms are 1 if transformed to themselves
- cross-terms are all zero, as coordinates independent of each other
- transformed metric
- $(0,0)$ term is unchanged, as -1 is squared
- (r, r) term is unchanged, as transformation is 1
- $(0, r)$ term is negated, but must still be equal, so it's zero
- no cross terms

Spherical stars
2015-12-14

LTime reversal

Time reversal

A $(x, x, y, x) \rightarrow(-t, x, y, z)$

$$
\begin{gathered}
\boldsymbol{\Lambda}:(t, x, y, z) \rightarrow(-t, x, y, z) \\
g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{gathered}
$$

Transformation

$$
\begin{gathered}
\Lambda_{\overline{0}}^{0}=x^{0}{ }_{, \overline{0}}=\frac{\partial t}{\partial(-t)}=-1 \\
\Lambda_{\bar{i}}^{i}=x_{, \bar{i}}^{i}=\frac{\partial x^{i}}{\partial x^{i}}=1
\end{gathered}
$$

- now I use the static constraint to simplify the metric
- transformation
$-(0,0)$ term is $\mathrm{d} t / \mathrm{d}(-t)$
- spatial terms are 1 if transformed to themselves
- cross-terms are all zero, as coordinates independent of each other
- transformed metric
- $(0,0)$ term is unchanged, as -1 is squared
- (r, r) term is unchanged, as transformation is 1
- $(0, r)$ term is negated, but must still be equal, so it's zero
- no cross terms

Time reversal

$$
\begin{aligned}
& \boldsymbol{\Lambda}:(t, x, y, z) \rightarrow(-t, x, y, z) \\
& g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{aligned}
$$

Transformation

$$
\begin{gathered}
\Lambda_{\overline{0}}^{0}=x^{0}{ }_{, \overline{0}}=\frac{\partial t}{\partial(-t)}=-1 \\
\Lambda_{\bar{i}}^{i}=x_{, \bar{i}}^{i}=\frac{\partial x^{i}}{\partial x^{i}}=1
\end{gathered}
$$

Metric

$$
\begin{aligned}
& g_{\overline{0} \overline{0}}=\left(\Lambda_{\overline{0}}^{0}\right)^{2} g_{00}=g_{00} \\
& g_{\bar{r} \bar{r}}=\left(\Lambda_{\bar{r}}^{r}\right)^{2} g_{r r}=g_{r r} \\
& g_{\overline{0} \bar{r}}=\Lambda^{0}{ }_{\overline{0}} \Lambda_{\bar{r}}^{r} g_{0 r}=-g_{0 r}
\end{aligned}
$$

Spherical stars

LTime reversal

- now I use the static constraint to simplify the metric
- transformation
$-(0,0)$ term is $\mathrm{d} t / \mathrm{d}(-t)$
- spatial terms are 1 if transformed to themselves
- cross-terms are all zero, as coordinates independent of each other
- transformed metric
- $(0,0)$ term is unchanged, as -1 is squared
- (r, r) term is unchanged, as transformation is 1
- $(0, r)$ term is negated, but must still be equal, so it's zero
- no cross terms

$\square_{\text {Static spacetimes }}$
 \llcorner The metric

- now we simplify the metric, since the cross term is zero
- we assume g_{00} to be negative, and $g_{r r}$ to be positive
- signature is $(-,+,+,+)$
- holds inside stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat
$-\Phi=\Lambda=0 \Longrightarrow e^{2 \Phi}=e^{2 \Lambda}=1$ and $\mathbf{g}=\eta$
- now we simplify the metric, since the cross term is zero
- we assume g_{00} to be negative, and $g_{r r}$ to be positive
- signature is $(-,+,+,+)$
- holds inside stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat
$-\Phi=\Lambda=0 \Longrightarrow e^{2 \Phi}=e^{2 \Lambda}=1$ and $\mathbf{g}=\eta$

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

Daniel Wysocki (RIT)

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

Static spherically symmetric metric

$$
\mathrm{d} s^{2}=-e^{2 \Phi} \mathrm{~d} t^{2}+e^{2 \Lambda} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

- now we simplify the metric, since the cross term is zero
- we assume g_{00} to be negative, and $g_{r r}$ to be positive
- signature is $(-,+,+,+)$
- holds inside stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat
$-\Phi=\Lambda=0 \Longrightarrow e^{2 \Phi}=e^{2 \Lambda}=1$ and $\mathbf{g}=\eta$

\llcorner The metric

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

Static spherically symmetric metric

$$
\mathrm{d} s^{2}=-e^{2 \Phi} \mathrm{~d} t^{2}+e^{2 \Lambda} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

$$
\lim _{r \rightarrow \infty} \Phi(r)=\lim _{r \rightarrow \infty} \Lambda(r)=0
$$

- now we simplify the metric, since the cross term is zero
- we assume g_{00} to be negative, and $g_{r r}$ to be positive
- signature is $(-,+,+,+)$
- holds inside stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat
$-\Phi=\Lambda=0 \Longrightarrow e^{2 \Phi}=e^{2 \Lambda}=1$ and $\mathbf{g}=\eta$

Einstein Tensor

General Einstein tensor

$$
G_{\alpha \beta}=R^{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R
$$

Spherical stars

- now we can use the metric to derive the Riemann tensor
- from that the Einstein tensor
- the derivation is involved, so we will just take them as is
- we're going to use some of these components later on
- note that prime denotes $\mathrm{d} / \mathrm{d} r$

Einstein Tensor

Static spacetimes
 -Einstein Tensor

- now we can use the metric to derive the Riemann tensor
- from that the Einstein tensor
- the derivation is involved, so we will just take them as is
- we're going to use some of these components later on
- note that prime denotes $\mathrm{d} / \mathrm{d} r$

Schutz (2009, pp. 165, 260)
Daniel Wysocki (RIT)

General Einstein tensor

$$
G_{\alpha \beta}=R^{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R
$$

Einstein tensor components

$$
\begin{aligned}
G_{00} & =\frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right] \\
G_{r r} & =-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime} \\
G_{\theta \theta} & =r^{2} e^{-2 \Lambda}\left[\Phi^{\prime \prime}+\left(\Phi^{\prime}\right)^{2}+\Phi^{\prime} / r-\Phi^{\prime} \Lambda^{\prime}-\Lambda^{\prime} / r\right] \\
G_{\phi \phi} & =\sin ^{2} \theta G_{\theta \theta}
\end{aligned}
$$

－stars are fluids－for simplicity we assume perfect

－thus we will impose additional constraints accordingly

－thus we will impose additional constraints accordingly

\qquad

\author{

}

都

路
－

都

\qquad

\qquad

Static perfect fluid
${ }^{\text {Static perfect }}$

id

\square
，

perfect fluid • thus we will impose additional constraints accordingly

Abstract

Static perfect Hurd

St Static P
－
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

-Static perfect fluid
-Four-velocity

- static fluid, so in MCRF three-velocity components all zero
- we find the only non-zero term, U^{0}, by relating to the dot product
- lower it with the metric, to use in next part

$$
\begin{aligned}
g_{00} U^{0} U^{0}=-1 \Longrightarrow & \left(U^{0}\right)^{2}=\left(-g_{00}\right)^{-1} \\
& \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2} \\
& \Longrightarrow U^{0}=\left(e^{2 \Phi}\right)^{-1 / 2}=e^{-\Phi}
\end{aligned}
$$

Constraints

$$
U^{i}=0(\text { static }) \quad \vec{U} \cdot \vec{U}=-1(\text { conservation law })
$$

Solving for U^{0}

$$
g_{00} U^{0} U^{0}=-1 \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2}=e^{-\Phi}
$$

Static perfect fluid
 -Four-velocity

- static fluid, so in MCRF three-velocity components all zero
- we find the only non-zero term, U^{0}, by relating to the dot product
- lower it with the metric, to use in next part

$$
\begin{aligned}
g_{00} U^{0} U^{0}=-1 \Longrightarrow & \left(U^{0}\right)^{2}=\left(-g_{00}\right)^{-1} \\
& \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2} \\
& \Longrightarrow U^{0}=\left(e^{2 \Phi}\right)^{-1 / 2}=e^{-\Phi}
\end{aligned}
$$

Four-velocity

Constraints

$$
U^{i}=0 \text { (static) } \quad \vec{U} \cdot \vec{U}=-1 \text { (conservation law) }
$$

Solving for U^{0}

$$
g_{00} U^{0} U^{0}=-1 \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2}=e^{-\Phi}
$$

Solving for U_{0}

$$
U_{0}=g_{00} U^{0}=-e^{\Phi}
$$ Spherical stars

- we find the only non-zero term, U^{0}, by relating to the dot product
- lower it with the metric, to use in next part

$$
\begin{aligned}
g_{00} U^{0} U^{0}=-1 \Longrightarrow & \left(U^{0}\right)^{2}=\left(-g_{00}\right)^{-1} \\
& \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2} \\
& \Longrightarrow U^{0}=\left(e^{2 \Phi}\right)^{-1 / 2}=e^{-\Phi}
\end{aligned}
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Spherical stars
2015-12-1

[^0]- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Spherical stars

Static perfect fluid
 $\square_{\text {Stress-energy tensor }}$

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Stress-energy tensor

$$
\begin{aligned}
& \text { Stress-energy tensor for perfect fluid } \\
& \qquad T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
\end{aligned}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Spherical stars

Stress energy tensor

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Static perfect fluid
Spherical stars
2015-12-14

Static perfect fluid
 —Stress-energy tensor

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Stress energy tensor

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

Components of $T_{\alpha \beta}$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal }
\end{aligned} \quad\left[\begin{array}{llll}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal } \\
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

$\complement_{\text {Static perfect fluid }}$
 $\left\llcorner_{\text {Stress-energy tensor }}\right.$

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal } \\
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}
\end{aligned}
$$

$$
\left[\begin{array}{llll}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

$\complement_{\text {Static perfect fluid }}$
 $\left\llcorner_{\text {Stress-energy tensor }}\right.$

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal } \\
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

$\complement_{\text {Static perfect fluid }}$
 $\left\llcorner_{\text {Stress-energy tensor }}\right.$

- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal } \\
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2} \\
& T_{\phi \phi}=p r^{2} \sin ^{2} \theta
\end{aligned}
$$

$$
\left[\begin{array}{llll}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress energy tensor

- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$
- $T_{i \alpha}=p g_{i \alpha}$ because spatial components of U are zero
- $T_{\alpha \beta}$ is diagonal because of previous condition and $g_{\alpha \beta}$ is diagonal
- T_{00} requires a little algebra
- $T_{i i}$ just need to multiply metric by p
- $T_{\phi \phi}$ can be written in terms of $T_{\theta \theta}$

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

$$
\begin{aligned}
& T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0 \\
& T_{\alpha \beta} \text { is diagonal } \\
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2} \\
& T_{\phi \phi}=p r^{2} \sin ^{2} \theta=T_{\theta \theta} \sin ^{2} \theta
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Schutz (2009, p. 260)
Daniel Wysocki (RIT) Spherical stars

Stress-energy tensor

Stress-energy tensor for perfect fluid

Components of $T_{\alpha \beta}$

Local thermodynamic equilibrium

$$
p=p(\rho, S) \approx p(\rho)
$$

- pressure related to energy density and specific entropy
- we often deal with negligibly small entropies
- in a static fluid we have local thermodynamic equilibrium
- pressure a function of density and specific entropy
- specific entropy assumed negligibly small

Equation of state

$\underset{\sim}{4}$ Static perfect fluid
号
Equation of state

Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

Schutz (2009, pp. 175, 261)
Daniel Wysocki (RIT)

- first equation follows from conservation of 4 -momentum
- due to symmetry, the only non-trivial solution is for $\alpha=r$
- equation of motion for static perfect fluid
- (derivation in bonus slides)

Spherical stars

\llcorner Equations of motion
erfect fluid
Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

- symmetries make only non-trivial solution $\alpha=r$

Spherical stars

$\stackrel{7}{4}$
$\stackrel{\rightharpoonup}{3}$
$\stackrel{\rightharpoonup}{3}$

Static perfect fluid
 -Equations of motion

- first equation follows from conservation of 4 -momentum
- due to symmetry, the only non-trivial solution is for $\alpha=r$
- equation of motion for static perfect fluid
- (derivation in bonus slides)

Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

- symmetries make only non-trivial solution $\alpha=r$

Equation of motion

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r}
$$

- first equation follows from conservation of 4 -momentum
- due to symmetry, the only non-trivial solution is for $\alpha=r$
- equation of motion for static perfect fluid
- (derivation in bonus slides)

Spherical stars

Mase finction

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00}
$$

- define the mass function, $m(r)$
- in Newtonian limit, $m(r)$ is mass within radius r

$$
m(r)=4 \pi \int_{0}^{r}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

- doesn't work in GR, because total energy is not localizable
Mas function

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

- inspect $(0,0)$ component of Einstein equations
- define the mass function, $m(r)$
- in Newtonian limit, $m(r)$ is mass within radius r

$$
m(r)=4 \pi \int_{0}^{r}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

- doesn't work in GR, because total energy is not localizable

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

$m(r)$

$$
m(r) \equiv \frac{1}{2} r\left(1-e^{-2 \Lambda}\right) \quad \text { or } \quad g_{r r}=e^{2 \Lambda} \equiv\left(1-\frac{2 m(r)}{r}\right)^{-1}
$$

Mas function
$\left\llcorner_{\text {Mass function }}\right.$

- inspect $(0,0)$ component of Einstein equations
- define the mass function, $m(r)$
- in Newtonian limit, $m(r)$ is mass within radius r

$$
m(r)=4 \pi \int_{0}^{r}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

- doesn't work in GR, because total energy is not localizable

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

$m(r)$

$$
m(r) \equiv \frac{1}{2} r\left(1-e^{-2 \Lambda}\right) \quad \text { or } \quad g_{r r}=e^{2 \Lambda} \equiv\left(1-\frac{2 m(r)}{r}\right)^{-1}
$$

Relation to energy density

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho
$$

- inspect $(0,0)$ component of Einstein equations
- define the mass function, $m(r)$
- in Newtonian limit, $m(r)$ is mass within radius r

$$
m(r)=4 \pi \int_{0}^{r}\left(r^{\prime}\right)^{2} \rho\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

- doesn't work in GR, because total energy is not localizable

$\Phi(r)$

Einstein field equations

$$
G_{r r}=8 \pi T_{r r}
$$

- inspect (r, r) component of Einstein equations
- gives us an expression for $\Phi(r)$

Spherical stars

 - $\Phi(r)$

$\Phi(r)$

Spherical stars

Einstein field equations

$$
G_{r r}=8 \pi T_{r r} \Longrightarrow-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime}=8 \pi p e^{2 \Lambda}
$$

- inspect (r, r) component of Einstein equations
- gives us an expression for $\Phi(r)$

$\Phi(r)$

Spherical stars

Einstein field equations

$$
G_{r r}=8 \pi T_{r r} \Longrightarrow-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime}=8 \pi p e^{2 \Lambda}
$$

$\Phi(r)$

$$
\Phi(r) \quad \frac{\mathrm{d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

- gives us an expression for $\Phi(r)$
ometry
Spherical stars

LExterior Geometry

- until now, we've not considered whether we were inside or outside star

Exterior Geometry

- properties inside different than outside (obviously)
- we're going to inspect both cases, starting with outside

Exterior Geometry

Condition

$$
\rho=p=0
$$

- the external conditions just state we are in a vacuum
- breaks down when matter surrounds star
- $m(r)$ is constant, we call it M
- $\mathrm{d} \Phi / \mathrm{d} r$ simplifies, and we can now integrate it to find $\Phi(r)$

Schwarzschild metric I

Ssmaraschild metrici 1

Condition

Consequences

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0
$$

$$
\rho=p=0
$$

Schwarzschild metric I

- the external conditions just state we are in a vacuum
- breaks down when matter surrounds star
- $m(r)$ is constant, we call it M
- $\mathrm{d} \Phi / \mathrm{d} r$ simplifies, and we can now integrate it to find $\Phi(r)$

Condition

Consequences

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 \quad m(r) \equiv M
$$

$$
\rho=p=0
$$

Spherical stars

L-Exterior Geometry
 —Schwarzschild metric I

- the external conditions just state we are in a vacuum
- breaks down when matter surrounds star
- $m(r)$ is constant, we call it M
- $\mathrm{d} \Phi / \mathrm{d} r$ simplifies, and we can now integrate it to find $\Phi(r)$

Consequences

$$
\begin{array}{ll}
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 & m(r) \equiv M \\
\frac{\mathrm{~d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}=\frac{M}{r(r-2 M)} &
\end{array}
$$

- the external conditions just state we are in a vacuum
- breaks down when matter surrounds star
- $m(r)$ is constant, we call it M
- $\mathrm{d} \Phi / \mathrm{d} r$ simplifies, and we can now integrate it to find $\Phi(r)$
- breas dow

Condition

$$
\rho=p=0
$$

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Consequences

$$
\begin{array}{ll}
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 & \\
\frac{\mathrm{~d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}=\frac{M}{r(r-2 M)} & \Phi(r)=\frac{1}{2} \log \left(1-\frac{2 M}{r}\right)
\end{array}
$$

Spherical stars

Exterior Geometry
 $\left\llcorner_{\text {Schwarzschild metric I }}\right.$

- the external conditions just state we are in a vacuum
- breaks down when matter surrounds star
- $m(r)$ is constant, we call it M
- $\mathrm{d} \Phi / \mathrm{d} r$ simplifies, and we can now integrate it to find $\Phi(r)$
metry

First two metric components

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1}
$$

Spherical stars

$\stackrel{7}{4}$
$\stackrel{\rightharpoonup}{3}$
$\stackrel{\rightharpoonup}{3}$

-Exterior Geometry
 $\square_{\text {Schwarzschild metric II }}$

- recall $g_{r r}$ from earlier
- substituting our expression from $\Phi(r)$ into $-e^{2 \Phi}$ gives g_{00}
- we have found the Schwarzschild metric!

Daniel Wysocki (RIT)
ometry

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1} \quad g_{00}=-e^{2 \Phi}=-\left(1-\frac{2 M}{r}\right)
$$

Schwarzschild metric II

First two metric components

Spherical stars
Exterior Geometry
$\left\llcorner_{\text {Schwarzschild metric II }}\right.$

- recall $g_{r r}$ from earlier
- substituting our expression from $\Phi(r)$ into $-e^{2 \Phi}$ gives g_{00}
- we have found the Schwarzschild metric!

First two metric components

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1} \quad g_{00}=-e^{2 \Phi}=-\left(1-\frac{2 M}{r}\right)
$$

Schwarzschild metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

- substituting our expression from $\Phi(r)$ into $-e^{2 \Phi}$ gives g_{00}
- we have found the Schwarzschild metric!

$\underset{5 l l}{ }$

-Schwarzschild metric II
 Spherical stars
 Exterior Geometry

- recall $g_{r r}$ from earlier

Schwarzschild metric II

- far-field metric of a star (far away)
- consider $m(r)$ to be total mass M
- can use Taylor expansion, and to first order rewrite as such
- we can define a new coordinate R, the distance from the star
- Cartesian coordinates

Far-field metric

Condition

Spherical stars

Exterior Geometry
 \llcorner Far-field metric

$$
r \gg M
$$

Schwarzschild metric
$\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}$

- far-field metric of a star (far away)
- consider $m(r)$ to be total mass M
- can use Taylor expansion, and to first order rewrite as such
- we can define a new coordinate R, the distance from the star
- Cartesian coordinates

Farffide mertic
$2 N$

$$
r \gg M
$$

Far-field Schwarzschild metric

$$
\mathrm{d} s^{2} \approx-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1+\frac{2 M}{r}\right) \quad \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

- far-field metric of a star (far away)
- consider $m(r)$ to be total mass M
- can use Taylor expansion, and to first order rewrite as such
- we can define a new coordinate R, the distance from the star
- Cartesian coordinates

Far-field metric

Condition

Spherical stars

டExterior Geometry
 \llcorner Far-field metric

- far-field metric of a star (far away)
- consider $m(r)$ to be total mass M
- can use Taylor expansion, and to first order rewrite as such
- we can define a new coordinate R, the distance from the star
- Cartesian coordinates

$$
\mathrm{d} s^{2} \approx-\left(1-\frac{2 M}{R}\right) \mathrm{d} t^{2}+\left(1+\frac{2 M}{R}\right)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

$$
R^{2} \equiv x^{2}+y^{2}+z^{2}
$$

\qquad

－now we look at the remaining，and most interesting regime
$\quad-$ inside the star
－our assumptions from outside the star no longer hold
號
$\underset{\text { Spherical stars }}{\substack{\text { Sp } \\ \text { In } \\ \text { Interior structure }}}$
$\underset{\text { Spherical stars }}{\substack{\text { Sp } \\ \text { In } \\ \text { Interior structure }}}$
$\underset{\text { In }}{\substack{\text { Spherical stars } \\ \text { LInterior structure } \\ \text { In }}}$

now we look at the remaining，and most interesting r
－inside the star
our assumptions from outside the star no longer hold
－now we look at the remaining，and most interesting re
$\quad-$ inside the star
－our assumptions from outside the star no longer hold

and

\qquad
\qquad
\square
\square
\square
 （1） \qquad
\qquad
\qquad

-

-

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

rolman Oppenheimer Vollov (T-O-V) equation

Interior structure
 -Tolman-Oppenheimer-Volkov (T-O-V) equation

- inside a star, we cannot assume density and pressure are zero
- revisit two earlier equations
- substitute one into the other
- arrive at the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- gives us an ODE relating
- pressure p
- density ρ
- mass function $m(r)$
- radius r
- eventually hope to solve all quantities in terms of r

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r}
$$

Spherical stars

- Interior structure
-Tolman-Oppenheimer-Volkov (T-O-V) equation
- inside a star, we cannot assume density and pressure are zero
- revisit two earlier equations
- substitute one into the other
- arrive at the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- gives us an ODE relating
- pressure p
- density ρ
- mass function $m(r)$
- radius r
- eventually hope to solve all quantities in terms of r

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall
 $$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r} \quad \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

Spherical stars

Interior structure
 LTolman-Oppenheimer-Volkov (T-O-V) equation

```
(6+p)
```

- inside a star, we cannot assume density and pressure are zero
- revisit two earlier equations
- substitute one into the other
- arrive at the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- gives us an ODE relating
- pressure p
- density ρ
- mass function $m(r)$
- radius r
- eventually hope to solve all quantities in terms of r

Interior structure
Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall
 $$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r} \quad \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

Tolman- Oppenheinere Volloov (T-O-V) equation
$\underset{7}{7} L_{\text {Interior structure }}$
-Tolman-Oppenheimer-Volkov (T-O-V) equation

- inside a star, we cannot assume density and pressure are zero
- revisit two earlier equations
- substitute one into the other
- arrive at the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- gives us an ODE relating
- pressure p
- density ρ
- mass function $m(r)$
- radius r
- eventually hope to solve all quantities in terms of r

System of coupled differential equations

$\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

Mass function

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho
$$

Equation of state

$$
p=p(\rho)
$$

Spherical stars

- $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation coupled with $\mathrm{d} m / \mathrm{d} r$ and $p(\rho)$
- 3 equations
-3 unknowns (m, ρ, p)
- $\Phi(r)$ only intermediate variable
- can integrate to find $m(r), \rho(r)$, and $p(r)$

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Spherical stars

Interior structure
 $\square_{\text {Newtonian hydrostatic equilibrium }}$

- in the Newtonian limit we get these constraints
- which allow us to cancel terms in the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- and arrive at the familiar equation of HSE

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Equation of hydrostatic equilibrium

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

- in the Newtonian limit we get these constraints
- which allow us to cancel terms in the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- and arrive at the familiar equation of HSE

Spherical stars

Interior structure
 \llcorner Newtonian hydrostatic equilibrium

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Interior structure
 \llcorner Newtonian hydrostatic equilibrium

- in the Newtonian limit we get these constraints
- which allow us to cancel terms in the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- and arrive at the familiar equation of HSE

Equation of hydrostatic equilibrium

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}=-\frac{\rho m(r)}{r^{2}}
$$

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)
Daniel Wysocki (RIT)

Constant density solution I

Spherical stars

- because it is the simplest case, we are going to investigate a star of uniform density, $\rho(r) \equiv \rho_{0}$
- this is unphysical
- for instance, the speed of sound in such a star is infinite
- neutron star density is almost uniform
- also leads us to a result which holds for all stellar densities
- easy to obtain mass function from earlier differential equation
- equal to the density times the volume of the sphere enclosed by radius r inside
- equal to the density times the volume of the entire star $(r=R)$ when outside
- continuous at the boundary

Constant density solution I

Spherical stars \square

Constraint

$$
\rho(r) \equiv \rho_{0}
$$

Mass function

$$
m(r)=\frac{4}{3} \pi \rho_{0} \begin{cases}r^{3}, & r \leq R \\ R^{3}, & r \geq R\end{cases}
$$

- because it is the simplest case, we are going to investigate a star of uniform density, $\rho(r) \equiv \rho_{0}$
- this is unphysical
- for instance, the speed of sound in such a star is infinite
- neutron star density is almost uniform
- also leads us to a result which holds for all stellar densities
- easy to obtain mass function from earlier differential equation
- equal to the density times the volume of the sphere enclosed by radius r inside
- equal to the density times the volume of the entire star $(r=R)$ when outside
- continuous at the boundary

Constant density solution II

 Constant density solution II

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}
$$

- recall the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation, which describes the interior of the star
- we can substitute $m(r)$ for $r \leq R$, to simplify it as shown
- this gives us a separable differential equation
- we integrate the differential equation from the center $\left(r=0, p=p_{c}\right)$ to some radius ($r=r, p=p$)
- to simplify the expression again, we've re-written it in terms of $m(r)$
- now we have a relation between ρ_{0}, p, and $m(r)$ at a given r

Constant density solution II

Constant density salution II

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}=-\frac{4}{3} \pi r \frac{\left(\rho_{0}+p\right)\left(\rho_{0}+3 p\right)}{1-\frac{8}{3} r^{2} \rho_{0}}
$$

- recall the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation, which describes the interior of the star
- we can substitute $m(r)$ for $r \leq R$, to simplify it as shown
- this gives us a separable differential equation
- we integrate the differential equation from the center $\left(r=0, p=p_{c}\right)$ to some radius ($r=r, p=p$)
- to simplify the expression again, we've re-written it in terms of $m(r)$
- now we have a relation between ρ_{0}, p, and $m(r)$ at a given r

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}=-\frac{4}{3} \pi r \frac{\left(\rho_{0}+p\right)\left(\rho_{0}+3 p\right)}{1-\frac{8}{3} r^{2} \rho_{0}}
$$

Integrated from center to internal radius r

$$
\frac{\rho_{0}+3 p}{\rho_{0}+p}=\frac{\rho_{0}+3 p_{c}}{\rho_{0}+p_{c}} \sqrt{1-2 m / r}
$$

- recall the $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation, which describes the interior of the star
- we can substitute $m(r)$ for $r \leq R$, to simplify it as shown
- this gives us a separable differential equation
- we integrate the differential equation from the center $\left(r=0, p=p_{c}\right)$ to some radius ($r=r, p=p$)
- to simplify the expression again, we've re-written it in terms of $m(r)$
- now we have a relation between ρ_{0}, p, and $m(r)$ at a given r

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

- at the surface, $r=R$ and $p=0$
- can solve the previous equation for R
- from this, we can solve for p_{c}
- this gives us an expression for the central pressure necessary
- we can see that this blows up when $M / R=4 / 9$

$$
3 \sqrt{1-8 / 9}-1=3 \sqrt{1 / 9}-1=1-0=0
$$

- radius cannot be smaller than $(9 / 4) M$
- less than the $2 M$ needed for a black hole
- Buchdahl's theorem states that this is true in general for all stars
$-\operatorname{not}$ just $\rho(r) \equiv \rho_{0}$

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

Central pressure p_{c}

$$
p_{c}=\rho_{0} \frac{1-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-1}
$$

$\left\llcorner_{\text {Constant density solution III }}\right.$

- at the surface, $r=R$ and $p=0$
- can solve the previous equation for R
- from this, we can solve for p_{c}
- this gives us an expression for the central pressure necessary
- we can see that this blows up when $M / R=4 / 9$

$$
3 \sqrt{1-8 / 9}-1=3 \sqrt{1 / 9}-1=1-0=0
$$

- radius cannot be smaller than $(9 / 4) M$
- less than the $2 M$ needed for a black hole
- Buchdahl's theorem states that this is true in general for all stars
$-\operatorname{not}$ just $\rho(r) \equiv \rho_{0}$

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

Central pressure p_{c}

$$
p_{c}=\rho_{0} \frac{1-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-1}
$$

Limit on M / R

$$
M / R \rightarrow 4 / 9 \Longrightarrow p_{c} \rightarrow \infty
$$

 \(\left\llcorner_{\text {Constant density solution III }}\right.\)
 - at the surface, $r=R$ and $p=0$
- can solve the previous equation for R
- from this, we can solve for p_{c}
- this gives us an expression for the central pressure necessary
- we can see that this blows up when $M / R=4 / 9$

$$
3 \sqrt{1-8 / 9}-1=3 \sqrt{1 / 9}-1=1-0=0
$$

- radius cannot be smaller than $(9 / 4) M$
- less than the $2 M$ needed for a black hole
- Buchdahl's theorem states that this is true in general for all stars
$-\operatorname{not}$ just $\rho(r) \equiv \rho_{0}$

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$

Spherical stars

[^1]- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- most massive possible object would have maximum densit

Spherical stars

- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R

Spherical stars

- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R
- most massive possible object would have maximum density everywhere

Spherical stars

- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R
- most massive possible object would have maximum density everywhere
- all other sustainable objects have a lower M / R

Spherical stars

- restate $M / R<4 / 9$ from Buchdahl's theorem
- give Carroll's intuitive explanation
- if we assume there is a maximum sustainable density in nature
- and we consider an object which fills a sphere with radius R
- then the most massive possible object within that volume would have a uniform density
- all other objects would need to have a lower density

டBuchdahl's theorem
(alice cares

- now we're going to have a brief overview of real stars
- now we're going to have a brief overview of real stars (1)
\qquad
\qquad
\qquad
\qquad

\qquad
\square
\square
\square

en

\qquad

Realistic stars

\llcorner White dwarfs

- end-of-life for low mass stars
- end-of-life form of lower mass stars like our Sun is as a white dwarf
- core left over after a star loses its outer shell as a planetary nebula
- nuclear fusion has halted, and only pressure of degenerate electron gas supports them
- Pauli exclusion principle
- structure can be described by the equation of HSE to high accuracy
- relativistic effects come into play for central densities:
- over $10^{8} \mathrm{~g} \mathrm{~cm}^{-3}$
- up until the maximum

Neutron stars

- mass condensed further than white dwarf
- created in supernovae, or collapse of white dwarf

$$
p^{+}+e^{-} \rightarrow n^{0}+\nu
$$

- held up by neutron degeneracy pressure
- matter incredibly complex and possess many unknown properties
- when a star condenses beyond a white dwarf, it may become a neutron star
- occurs in the aftermath of a supernova, or collapse of white dwarf
- compression beyond neutron star would form a black hole
- kinetic energy of electrons high
- allows energy release when combined with a proton
- energy carried away by neutrino, and neutron left behind
- held up by neutron degeneracy pressure - Pauli again
- matter incredibly complex
- suitable equation of state is a topic under active research

Rotating stars

Realistic stars
 -Rotating stars

- much more complicated when we allow for rotation
- metric no longer static
- addition of cross terms between t and ϕ
- metric dependence on θ in addition to r
- metric is still stationary
- perfect fluid assumption works to high accuracy
- can still assume perfect fluid to high accuracy
- rapidly rotating neutron stars
- magnetic field produces electromagnetic radiation
- pulses of radio waves observed with the right orientation
- introduction of strong magnetic field requires
- consideration of coupled Einstein-Maxwell field equations
- $T_{\alpha \beta}$ includes EM energy density - non-isotropic
- pulsars are rapidly rotating neutron stars
- they have a strong magnetic field which causes emission of light
- magnetic poles may be offset from axis of rotation
- if observed from right angle, see pulses of radio light, like lighthouse
- by including a strong magnetic field, we need to
- consider the coupled Einstein-Maxwell field equations, assuming
- equilibrium
- stationary
- axisymmetric
- internal electric current
- need to include electromagnetic energy density to stress-energy tensor
- this makes $T_{\alpha \beta}$ non-isotropic
mame

- You made it to the end!

References

\qquad

-
-
-
$+$
-

- (\square
.
\qquad
\square
\square
\square
 - \square

$$
\begin{aligned}
T_{; \beta}^{\alpha \beta} & =0, \quad T^{\alpha \beta}=(\rho+p) U^{\alpha} U^{\beta}+p g^{\alpha \beta} \\
T_{; \beta}^{r \beta} & =(\rho+p) U^{\beta} U_{; \beta}^{r}+g^{r r} p_{, r}=0 \\
& =(\rho+p) U^{\beta} U^{\lambda} \Gamma_{\lambda \beta}^{r}+e^{-2 \Lambda} p_{, r}=0 \\
& =(\rho+p)\left(U^{0}\right)^{2} \Gamma^{r}{ }_{00}+e^{-2 \Lambda} p_{, r}=0 \\
& =(\rho+p)\left(e^{-2 \Phi}\right)\left(e^{-2 \Lambda} e^{2 \Phi} \Phi_{, r}\right)+e^{-2 \Lambda} p_{, r}=0 \\
-\frac{\mathrm{d} p}{\mathrm{~d} r} & =(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}
\end{aligned}
$$

[^0]: ᄂStatic perfect fluid
 —Stress-energy tensor

[^1]: Interior structure
 -Buchdahl's theorem

