Spherical solutions for stars

Daniel Wysocki

Rochester Institute of Technology

General Relativity I Presentations
December 14th, 2015

Introduction

- model stars using spherical symmetry
- Schwarzschild metric
- $\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation
- real stars

Spherically symmetric coordinates

Two-sphere in flat spacetime

General metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Two-sphere in flat spacetime

General metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Metric on 2-sphere

$$
\mathrm{d} l^{2}=r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \equiv r^{2} \mathrm{~d} \Omega^{2}
$$

Two-sphere in curved spacetime

Metric on 2-sphere

$$
\mathrm{d} l^{2}=f\left(r^{\prime}, t\right) \mathrm{d} \Omega^{2}
$$

Schutz (2009, pp. 256-257)

Two-sphere in curved spacetime

Metric on 2-sphere

$$
\mathrm{d} l^{2}=f\left(r^{\prime}, t\right) \mathrm{d} \Omega^{2}
$$

Relation to r

$$
f\left(r^{\prime}, t\right) \equiv r^{2}
$$

Schutz (2009, pp. 256-257)

Meaning of r

- not proper distance from center meuneH yrew

Figure:
Surface with circular symmetry but no coordinate $r=0$.

Meaning of r

- not proper distance from center
- "curvature" or "area" coordinate
- radius of curvature and area

Figure:
Surface with circular symmetry but no coordinate $r=0$.

Meaning of r

- not proper distance from center
- "curvature" or "area" coordinate
- radius of curvature and area
- $r=$ const, $t=$ const
- $A=4 \pi r^{2}$
- $C=2 \pi r$

Figure:
Surface with circular symmetry but no coordinate $r=0$.

Spherically symmetric spacetime

General metric

$$
\begin{gathered}
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+2 g_{0 r} \mathrm{~d} r \mathrm{~d} t+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2} \\
g_{00}, g_{0 r}, \text { and } g_{r r}: \text { functions of } t \text { and } r
\end{gathered}
$$

Static spacetimes

Motivation

- leads to simple derivation of Schwarzschild metric

[^0]
Motivation

- leads to simple derivation of Schwarzschild metric
- unique solution to spherically symmetric, asymptotically flat Einstein vacuum field equations (Birkhoff's theorem)

Schutz (2009, p. 263) and Misner, Thorne, and Wheeler (1973, p. 843)

Definition

A spacetime is static if we can find a time coordinate t for which
(i) the metric independent of t

$$
g_{\alpha \beta, t}=0
$$

Definition

A spacetime is static if we can find a time coordinate t for which
(i) the metric independent of t

$$
g_{\alpha \beta, t}=0
$$

(ii) the geometry unchanged by time reversal

$$
t \rightarrow-t
$$

Time reversal

$$
\begin{gathered}
\Lambda:(t, x, y, z) \rightarrow(-t, x, y, z) \\
g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{gathered}
$$

Time reversal

$$
\begin{gathered}
\boldsymbol{\Lambda}:(t, x, y, z) \rightarrow(-t, x, y, z) \\
g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{gathered}
$$

Transformation

$$
\begin{gathered}
\Lambda_{\overline{0}}^{0}=x_{, \overline{0}}^{0}=\frac{\partial t}{\partial(-t)}=-1 \\
\Lambda_{\bar{i}}^{i}=x_{, \bar{i}}^{i}=\frac{\partial x^{i}}{\partial x^{i}}=1
\end{gathered}
$$

Time reversal

$$
\begin{gathered}
\boldsymbol{\Lambda}:(t, x, y, z) \rightarrow(-t, x, y, z) \\
g_{\bar{\alpha} \bar{\beta}}=\Lambda^{\alpha}{ }_{\bar{\alpha}} \Lambda^{\beta}{ }_{\bar{\beta}} g_{\alpha \beta}=g_{\alpha \beta}
\end{gathered}
$$

Transformation

$$
\begin{gathered}
\Lambda_{\overline{0}}^{0}=x_{, \overline{0}}^{0}=\frac{\partial t}{\partial(-t)}=-1 \\
\Lambda_{\bar{i}}^{i}=x_{, \bar{i}}^{i}=\frac{\partial x^{i}}{\partial x^{i}}=1
\end{gathered}
$$

Metric

$$
\begin{aligned}
& g_{\overline{0} \overline{0}}=\left(\Lambda^{0} \overline{0}^{2} g_{00}=g_{00}\right. \\
& g_{\bar{r} \bar{r}}=\left(\Lambda_{\bar{r}}^{r}\right)^{2} g_{r r}=g_{r r} \\
& g_{\overline{0} \bar{r}}=\Lambda^{0}{ }_{\overline{0}} \Lambda_{\bar{r}}^{r} g_{0 r}=-g_{0 r}
\end{aligned}
$$

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Schutz (2009, pp. 258-259)

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

Static spherically symmetric metric

$$
\mathrm{d} s^{2}=-e^{2 \Phi} \mathrm{~d} t^{2}+e^{2 \Lambda} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

The metric

Simplified metric

$$
\mathrm{d} s^{2}=g_{00} \mathrm{~d} t^{2}+g_{r r} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Replacement

$$
g_{00} \rightarrow-e^{2 \Phi}, \quad g_{r r} \rightarrow e^{2 \Lambda}, \quad \text { provided } g_{00}<0<g_{r r}
$$

Static spherically symmetric metric

$$
\mathrm{d} s^{2}=-e^{2 \Phi} \mathrm{~d} t^{2}+e^{2 \Lambda} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

$$
\lim _{r \rightarrow \infty} \Phi(r)=\lim _{r \rightarrow \infty} \Lambda(r)=0
$$

Einstein Tensor

General Einstein tensor

$$
G_{\alpha \beta}=R^{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R
$$

Schutz (2009, pp. 165, 260)

Einstein Tensor

General Einstein tensor

$$
G_{\alpha \beta}=R^{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R
$$

Einstein tensor components

$$
\begin{aligned}
G_{00} & =\frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right] \\
G_{r r} & =-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime} \\
G_{\theta \theta} & =r^{2} e^{-2 \Lambda}\left[\Phi^{\prime \prime}+\left(\Phi^{\prime}\right)^{2}+\Phi^{\prime} / r-\Phi^{\prime} \Lambda^{\prime}-\Lambda^{\prime} / r\right] \\
G_{\phi \phi} & =\sin ^{2} \theta G_{\theta \theta}
\end{aligned}
$$

Static perfect fluid

Four-velocity

Constraints

$$
U^{i}=0(\text { static }) \quad \vec{U} \cdot \vec{U}=-1 \text { (conservation law) }
$$

Four-velocity

Constraints

$$
U^{i}=0 \text { (static) } \quad \vec{U} \cdot \vec{U}=-1 \text { (conservation law) }
$$

Solving for U^{0}

$$
g_{00} U^{0} U^{0}=-1 \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2}=e^{-\Phi}
$$

Four-velocity

Constraints

$$
U^{i}=0 \text { (static) } \quad \vec{U} \cdot \vec{U}=-1 \text { (conservation law) }
$$

Solving for U^{0}

$$
g_{00} U^{0} U^{0}=-1 \Longrightarrow U^{0}=\left(-g_{00}\right)^{-1 / 2}=e^{-\Phi}
$$

Solving for U_{0}

$$
U_{0}=g_{00} U^{0}=-e^{\Phi}
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$$
T_{00}=(\rho+p)\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$T_{\alpha \beta}$ is diagonal

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$T_{\alpha \beta}$ is diagonal

$$
T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$T_{\alpha \beta}$ is diagonal

$$
\begin{aligned}
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$T_{\alpha \beta}$ is diagonal

$$
\begin{aligned}
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$$
T_{\alpha \beta} \text { is diagonal }
$$

$$
\begin{aligned}
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2} \\
& T_{\phi \phi}=p r^{2} \sin ^{2} \theta
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Stress-energy tensor

Stress-energy tensor for perfect fluid

$$
T_{\alpha \beta}=(\rho+p) U_{\alpha} U_{\beta}+p g_{\alpha \beta}
$$

Components of $T_{\alpha \beta}$

$$
T_{i \alpha}=p g_{i \alpha} \Longrightarrow T_{i 0}=0
$$

$$
T_{\alpha \beta} \text { is diagonal }
$$

$$
\begin{aligned}
& T_{00}=(\rho+p) e^{2 \Phi}+p\left(-e^{2 \Phi}\right)=\rho e^{2 \Phi} \\
& T_{r r}=p e^{2 \Lambda}, \quad T_{\theta \theta}=p r^{2} \\
& T_{\phi \phi}=p r^{2} \sin ^{2} \theta=T_{\theta \theta} \sin ^{2} \theta
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
T_{00} & T_{0 r} & T_{0 \theta} & T_{0 \phi} \\
T_{r 0} & T_{r r} & T_{r \theta} & T_{r \phi} \\
T_{\theta 0} & T_{\theta r} & T_{\theta \theta} & T_{\theta \phi} \\
T_{\phi 0} & T_{\phi r} & T_{\phi \theta} & T_{\phi \phi}
\end{array}\right]
$$

Equation of state

Local thermodynamic equilibrium

$$
p=p(\rho, S) \approx p(\rho)
$$

- pressure related to energy density and specific entropy
- we often deal with negligibly small entropies

Schutz (2009, p. 261)

Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

Schutz (2009, pp. 175, 261)

Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

- symmetries make only non-trivial solution $\alpha=r$

Schutz (2009, pp. 175, 261)

Equations of motion

Conservation of 4-momentum

$$
T_{; \beta}^{\alpha \beta}=0
$$

- symmetries make only non-trivial solution $\alpha=r$

Equation of motion

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r}
$$

Schutz (2009, pp. 175, 261)

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00}
$$

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

Schutz (2009, pp. 260-262)

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

$m(r)$

$$
m(r) \equiv \frac{1}{2} r\left(1-e^{-2 \Lambda}\right) \quad \text { or } \quad g_{r r}=e^{2 \Lambda} \equiv\left(1-\frac{2 m(r)}{r}\right)^{-1}
$$

Schutz (2009, pp. 260-262)

Mass function

Einstein field equations

$$
G_{00}=8 \pi T_{00} \Longrightarrow \frac{1}{r^{2}} e^{2 \Phi} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r\left(1-e^{-2 \Lambda}\right)\right]=8 \pi \rho e^{2 \Phi}
$$

$m(r)$

$$
m(r) \equiv \frac{1}{2} r\left(1-e^{-2 \Lambda}\right) \quad \text { or } \quad g_{r r}=e^{2 \Lambda} \equiv\left(1-\frac{2 m(r)}{r}\right)^{-1}
$$

Relation to energy density

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho
$$

Schutz (2009, pp. 260-262)
$\Phi(r)$

Einstein field equations

$$
G_{r r}=8 \pi T_{r r}
$$

Schutz (2009, pp. 260-262)
$\Phi(r)$

Einstein field equations

$$
G_{r r}=8 \pi T_{r r} \Longrightarrow-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime}=8 \pi p e^{2 \Lambda}
$$

Schutz (2009, pp. 260-262)
$\Phi(r)$

Einstein field equations

$$
G_{r r}=8 \pi T_{r r} \Longrightarrow-\frac{1}{r^{2}} e^{2 \Lambda}\left(1-e^{-2 \Lambda}\right)+\frac{2}{r} \Phi^{\prime}=8 \pi p e^{2 \Lambda}
$$

$\Phi(r)$

$$
\frac{\mathrm{d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

Schutz (2009, pp. 260-262)

Exterior Geometry

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Schutz (2009, pp. 262-263)

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Consequences

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0
$$

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Consequences

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 \quad m(r) \equiv M
$$

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Consequences

$$
\begin{array}{ll}
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 & m(r) \equiv M \\
\frac{\mathrm{~d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}=\frac{M}{r(r-2 M)} &
\end{array}
$$

Schwarzschild metric I

Condition

$$
\rho=p=0
$$

Consequences

$$
\begin{array}{ll}
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho=0 & \\
\frac{\mathrm{~d} \Phi(r)}{\mathrm{d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}=\frac{M}{r(r-2 M)} & \Phi(r)=\frac{1}{2} \log \left(1-\frac{2 M}{r}\right)
\end{array}
$$

Schutz (2009, pp. 262-263)

Schwarzschild metric II

First two metric components

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1}
$$

Schutz (2009, pp. 258, 262-263)

Schwarzschild metric II

First two metric components

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1} \quad g_{00}=-e^{2 \Phi}=-\left(1-\frac{2 M}{r}\right)
$$

Schutz (2009, pp. 258, 262-263)

Schwarzschild metric II

First two metric components

$$
g_{r r}=e^{2 \Lambda}=\left(1-\frac{2 M}{r}\right)^{-1} \quad g_{00}=-e^{2 \Phi}=-\left(1-\frac{2 M}{r}\right)
$$

Schwarzschild metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Schutz (2009, pp. 258, 262-263)

Far-field metric

Condition

$$
r \gg M
$$

Far-field metric

Condition

$$
r \gg M
$$

Schwarzschild metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Schutz (2009, pp. 263)

Far-field metric

Condition

$$
r \gg M
$$

Far-field Schwarzschild metric

$$
\mathrm{d} s^{2} \approx-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1+\frac{2 M}{r}\right) \quad \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Far-field metric

Condition

$$
r \gg M
$$

Far-field Schwarzschild metric

$$
\mathrm{d} s^{2} \approx-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1+\frac{2 M}{r}\right) \quad \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Far-field Schwarzschild metric (Cartesian)

$$
\begin{gathered}
\mathrm{d} s^{2} \approx-\left(1-\frac{2 M}{R}\right) \mathrm{d} t^{2}+\left(1+\frac{2 M}{R}\right)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \\
R^{2} \equiv x^{2}+y^{2}+z^{2}
\end{gathered}
$$

Interior structure

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r}
$$

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r} \quad \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

Schutz (2009, pp. 261-264)

Tolman-Oppenheimer-Volkov (T-O-V) equation

Condition

$$
\rho \neq 0 \quad p \neq 0
$$

Recall

$$
(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}=-\frac{\mathrm{d} p}{\mathrm{~d} r} \quad \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=\frac{m(r)+4 \pi r^{3} p}{r[r-2 m(r)]}
$$

$\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

Schutz (2009, pp. 261-264)

System of coupled differential equations

$\mathrm{T}-\mathrm{O}-\mathrm{V}$ equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

Mass function

$$
\frac{\mathrm{d} m(r)}{\mathrm{d} r}=4 \pi r^{2} \rho
$$

Equation of state

$$
p=p(\rho)
$$

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Equation of hydrostatic equilibrium

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}
$$

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)

Newtonian hydrostatic equilibrium

Newtonian limit

$$
p \ll \rho ; \quad 4 \pi r^{3} p \ll m ; \quad m \ll r
$$

Equation of hydrostatic equilibrium

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left[m(r)+4 \pi r^{3} p\right]}{r[r-2 m(r)]}=-\frac{\rho m(r)}{r^{2}}
$$

Schutz (2009, pp. 265-266) and Hansen and Kawaler (1994, p. 3)

Constant density solution I

Constraint

$$
\rho(r) \equiv \rho_{0}
$$

Constant density solution I

Constraint

$$
\rho(r) \equiv \rho_{0}
$$

Mass function

$$
m(r)=\frac{4}{3} \pi \rho_{0} \begin{cases}r^{3}, & r \leq R, \\ R^{3}, & r \geq R .\end{cases}
$$

Constant density solution II

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}
$$

Schutz (2009, pp. 264, 266-267)

Constant density solution II

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}=-\frac{4}{3} \pi r \frac{\left(\rho_{0}+p\right)\left(\rho_{0}+3 p\right)}{1-\frac{8}{3} r^{2} \rho_{0}}
$$

Schutz (2009, pp. 264, 266-267)

Constant density solution II

T-O-V equation

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{(\rho+p)\left(m+4 \pi r^{3} p\right)}{r(r-2 m)}=-\frac{4}{3} \pi r \frac{\left(\rho_{0}+p\right)\left(\rho_{0}+3 p\right)}{1-\frac{8}{3} r^{2} \rho_{0}}
$$

Integrated from center to internal radius r

$$
\frac{\rho_{0}+3 p}{\rho_{0}+p}=\frac{\rho_{0}+3 p_{c}}{\rho_{0}+p_{c}} \sqrt{1-2 m / r}
$$

Schutz (2009, pp. 264, 266-267)

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

Schutz (2009, pp. 266-267, 269)

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

Central pressure p_{c}

$$
p_{c}=\rho_{0} \frac{1-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R-1}}
$$

Schutz (2009, pp. 266-267, 269)

Constant density solution III

Radius R

$$
R^{2}=\frac{3}{8 \pi \rho_{0}}\left[1-\left(\frac{\rho_{0}+p_{c}}{\rho_{0}+3 p_{c}}\right)^{2}\right]
$$

Central pressure p_{c}

$$
p_{c}=\rho_{0} \frac{1-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-1}
$$

Limit on M / R

$$
M / R \rightarrow 4 / 9 \Longrightarrow p_{c} \rightarrow \infty
$$

Schutz (2009, pp. 266-267, 269)

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R
- most massive possible object would have maximum density everywhere

Buchdahl's theorem

- even for non-constant density, $M / R<4 / 9$
- intuitive explanation:
- assume there is a maximum sustainable density, $(M / R)_{\max }$
- consider an object of radius R
- most massive possible object would have maximum density everywhere
- all other sustainable objects have a lower M / R

Realistic stars

White dwarfs

- end-of-life for low mass stars
- held up by electron degeneracy pressure
- Newtonian structure accurate to 1%

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}=-\frac{\rho m}{r^{2}}
$$

- relativistic effects important on stability and pulsation for

$$
10^{8} \mathrm{~g} \mathrm{~cm}^{-3} \lesssim \rho_{c} \lesssim 10^{8.4} \mathrm{~g} \mathrm{~cm}^{-3}
$$

Misner, Thorne, and Wheeler (1973, p. 627)

Neutron stars

- mass condensed further than white dwarf
- created in supernovae, or collapse of white dwarf

$$
p^{+}+e^{-} \rightarrow n^{0}+\nu
$$

- held up by neutron degeneracy pressure
- matter incredibly complex and possess many unknown properties

Rotating stars

Metric

$$
\begin{gathered}
\mathrm{d} s^{2}=-e^{2 \nu} \mathrm{~d} t+e^{2 \psi}(\mathrm{~d} \phi-\omega \mathrm{d} t)^{2}+e^{2 \mu}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right), \\
\nu, \psi, \omega, \text { and } \mu: \text { functions of } r \text { and } \theta
\end{gathered}
$$

- stationary
- can still assume perfect fluid to high accuracy

Stergioulas (2003, p. 8)

Pulsars

- rapidly rotating neutron stars
- magnetic field produces electromagnetic radiation
- pulses of radio waves observed with the right orientation
- introduction of strong magnetic field requires
- consideration of coupled Einstein-Maxwell field equations
- $T_{\alpha \beta}$ includes EM energy density - non-isotropic

Misner, Thorne, and Wheeler (1973, p. 628) and Stergioulas (2003, p. 28)

References

（1．S．M．Carroll．Spacetime and geometry．An introduction to general relativity． 2004.
－C．J．Hansen and S．D．Kawaler．Stellar Interiors．Physical Principles，Structure，and Evolution． 1994.
圊 C．W．Misner，K．S．Thorne，and J．A．Wheeler．Gravitation． 1973.

回 B．Schutz．A First Course in General Relativity．May 2009.
目 N．Stergioulas．Rotating Stars in Relativity．Living reviews in relativity，6：3，June 2003．［Online；accessed 2015－12－09］．DOI： 10．12942／lrr－2003－3．eprint：gr－qc／0302034．

Bonus slides

Equations of motion

$$
\begin{aligned}
T_{; \beta}^{\alpha \beta} & =0, \quad T^{\alpha \beta}=(\rho+p) U^{\alpha} U^{\beta}+p g^{\alpha \beta} \\
T_{; \beta}^{r \beta} & =(\rho+p) U^{\beta} U_{; \beta}^{r}+g^{r r} p_{, r}=0 \\
& =(\rho+p) U^{\beta} U^{\lambda} \Gamma_{\lambda \beta}^{r}+e^{-2 \Lambda} p_{, r}=0 \\
& =(\rho+p)\left(U^{0}\right)^{2} \Gamma_{00}^{r}+e^{-2 \Lambda} p_{, r}=0 \\
& =(\rho+p)\left(e^{-2 \Phi}\right)\left(e^{-2 \Lambda} e^{2 \Phi} \Phi_{, r}\right)+e^{-2 \Lambda} p_{, r}=0 \\
-\frac{\mathrm{d} p}{\mathrm{~d} r} & =(\rho+p) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}
\end{aligned}
$$

[^0]: Schutz (2009, p. 263) and Misner, Thorne, and Wheeler (1973, p. 843)

