
AI Programming (CSC416) - Textbook Assignment #3
Dan Wysocki

Chapter 3 deals mainly with informed search methods, greedy algorithms, and heuristics. The methods
detailed in this chapter contrast with those in the last chapter because they tend to focus less on finding an
optimal solution, and more on finding a solution in a shorter time, or using less memory. Such algorithms are
important when it is not possible to find the optimal solution in an acceptible amount of time, such as is the
case in games like chess, or real world AI.

Questions for discussion

2. Explain why hill climbing would be classified as a greedy algorithm.
Hill climbing is a greedy algorithm, because at each step in the search for a solution, the first path
which brings the climber closer to the goal state than the current is chosen. It is very greedy in that it
doesn’t even consider all of its choices for the next move, and takes the very first path which improves
its state. There is no backtracking allowed, so it is entirely possible that the goal state, or the global
maximum, is never reached. A local maximum, however, will be reached for certain.

3. Explain how steepest-ascent hill climbing can also provide an optimal solution.
Steepest-ascent hill climbing has the advantage over simple hill climbing of considering all of its choices
at a given step, and selecting the one which brings it closer to the goal state, instead of choosing the
very first one which improves on the current state. Like simple hill climbing, it will converge on a
local maximum, though it does so in a less greedy manner. The local maximum can also be a global
maximum, though the method makes no distinction. The only time either method would be guaranteed
to find the global maximum is when there is only a single maximum.

4. Why is it that the best-first search is more effective than hill climbing?
Best-first search has the advantage over hill climbing that it will always converge to a solution if one
exists. It still might not find the optimal path to the solution. A best-first search may find a local
maximum, but if that does not satisfy the goal state, it will backtrack and traverse other nodes until it
finds the global maximum.

5. Explain how beam search works.
Beam search is a more memory-limited form of best-first search. Like best-first search, it looks at some
heuristic measure of the transition nodes, and first expands the one which has the best score. Unlike
best-first search, it has a limit on the number of transition nodes it will consider from a given node,
called the beam width. So if the beam width is 2, only the 2 best transitions from each node will be
expanded. If the beam width is infinite, then it becomes best-first search. By imposing this beam width
limitation, it becomes possible for the goal state to be rendered un-reachable, and so not only does it
not guarantee an optimal solution, but it doesn’t even guarantee a solution whatsoever. This, however,
is the cost paid for memory conservation.

6. What does it mean for a heuristic to be admissible?
A heuristic is admissible if it does not overestimate the distance to the goal state. The point of a
heuristic is not to find the shortest path to the goal, but instead to find a path which eventually reaches
the goal in a reasonable amount of time. If a heuristic’s estimate of distance was perfect, then it would
hardly be a heuristic at that point. If it overestimates the distance, then there may be a point in the
search where the optimal path is intentionally avoided because its distance was overestimated.
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Exercises

1. Give three examples of heuristics and explain how they play a significant role in

a. your day-to-day life, and
b. the problem-solving process for some challenge that faces you.

i. The banana ripeness heuristic:
if the banana is partially green:

wait to eat it
else if the banana is mostly brown:

check that the inside is not completely rotten before eating it
else if the banana is completely black:

throw it away without hesitation

This heuristic has helped me in my day-to-day fight against hunger, as well as my overall
happiness level. By waiting until a banana is no longer green, I end up eating a tastier banana,
and my happiness increases. By avoiding eating completely rotten bananas, I avoid sickness.
Each day I face the challenge of deciding whether my bananas are fit for consumption. This
heuristic which I have developed through experience helps reduce the time I spend questioning
whether I should eat a particular banana, and saves me from eating a banana at the wrong
time.

ii. The jacket heuristic:
if the skies are overcast:

wear a rain jacket
else if it is cold outside:

wear a regular jacket or coat
else:

wear no jacket

This heuristic has helped me avoid wetness and coldness in my day-to-day life. It has helped
me to decide when to wear a jacket for warmth or dryness, and when to leave my jacket at
home. The weather is unpredictable, so it does not always work, but it has certainly helped.
Dressing properly has helped me in the challenge of survival in harsh weather, where I might
freeze to death or contract pneumonia if I leave home without a jacket.

iii. The light heuristic:
if a light is on, and it is not being used:

turn it off

This heuristic has helped me reduce my energy usage each day. Each day it has reduced my
negative impact on the environment.
This heuristic has aided in solving the challenge of paying power bills. It has probably saved
me several dollars in total.

2. Explain why hill climbing is called a “greedy algorithm.”
Hill climbing is called a greedy algorithm because at each step it makes the locally optimal choice. It
does not necessarily converge to a global maximum, but it will find a local maximum, which may or
may not be close to the global one, but will likely be found in a shorter time.

a. Describe some other algorithms that you know that are “greedy.”
One famous greedy algorithm is Prim’s Algorithm, which finds a minimal spanning tree of a graph.
Another is Kruskal’s algorithm, which can not only find the minimal spanning tree, but also the
minimal spanning forest.
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b. Explain how steepest-ascent hill climbing is an improvement over simple hill climbing.
Steepest-ascent hill climbing improves over simple hill climbing in that it actually weighs all options
at a given node, instead of choosing the first one which improves over the current node. It is still
subject to the same pitfalls, but it has a better chance of finding a greater local maximum, even if
it is not the global maximum.

c. How does the best first search improve over hill climbing?
Best first search, unlike hill climbing, has the ability to backtrack. It will not settle for a local
maximum, and will traverse the entire tree until it reaches a global maximum if it needs to. Of
course, it does not have to search the entire tree, as it knows to stop once the goal is met. Still, it
will not attempt to take the most optimal path to the goal, and will simply stop once it finds any
path to the goal.

6. Consider the following variation of the n-Queens Problem:
If some of the squares that would be attacked by the placement are obstructed by the
placement of pawns on an n x n chessboard, can more than n-Queens be placed on the
partial board that remains? For example, if five pawns are added to a 3 x 3 chessboard,
then four nonattacking Queens may be placed on the board (Figure 3.30).
As Figure 3.30 suggests, there do exist values of n such that an n× n chess board can contain m > n
non-attacking queens. However, this is not true for all values of n. Take for instance the simplest case:
a 2× 2 board. It is impossible to even place 2 queens on such a board without them attacking, as they
must always be touching. However, this is an unfair example, as the question states that the pawns
must obstruct the queens’ attacks, which is not possible on a 2× 2 board.
If we raise the size to 4× 4, then we have a fair counter-example. On such a board, it is impossible to
place more than 4 non-attacking queens, because if we put 2 queens in the same row or column, no
queen can be placed in the adjacent row or column, as they would have to touch one of the 2 queens.
This means that there can either be two rows or columns with two queens in them, one row or column
with two queens while another two have single queens, or all rows and columns must have a single
queen in them. In all cases this limits us to 4 queens. So in general, an n× n chess board cannot have
m > n queens, although certain values of n allow it.

8. Develop an admissible heuristic to solve the Maze Problem from Chapter 2 (Exercise 13).
The most obvious admissible heuristic to use is the Euclidean distance, or “ordinary” distance to the
goal. This is the distance which assumes one can travel in a straight line to the goal, despite it not
always being possible. So if ~r is the separation vector between the player and the goal, the magnitude
of that vector |~r| =

√
r2

x + r2
y is the euclidean distance to the goal. The heuristic would be defined as

h(~r) = |~r|.

a. Employ your heuristic to conduct an A* search to solve this problem.
First I have labeled all forks in the maze with the letters A-L.
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Using an A* search with my heuristic, the paths chosen are described by the following graph. Note
that if 2 nodes are at the same depth, they are visited in an order which follows the colors of the
rainbow, so red is visited first, then orange, and so on.

4



Start

A B

C

F

G

I J

K L

Goal

12. In Chapter 2 we presented the n-Queens Problem. Write a program to solve the Eight-

5



Queens Problem by applying constraints that remove any row or column from consider-
ation once a queen has been placed.

#!/usr/bin/env lein-exec

;; Clojure program which iteratively finds the first solution to the ;;
;; 8-Queens problem using the constraints of Chapter 3 Exercise 12. ;;

(defn abs-difference [x y]
"Finds the absolute value of the difference between two sequences."
(map #(Math/abs (- %1 %2)) x y))

(defn diagonal-clash? [taken pair]
"Returns true if the given pair clashes diagonally with any of the taken
pairs by checking if the abs-difference between the pair and any taken pair
is the same.

Examples:
[1 1] and [2 2] clash because |1-2| == |1-2|
[0 1] and [1 2] clash because |0-1| == |1-2|"
(some true?

(for [taken-pair taken]
(apply = (abs-difference taken-pair pair)))))

(defn find-solution-iter [rows cols taken]
"Recursively finds the first found sets of solution pairs to the 8-queens
problem."
(some identity

(for [r rows, c cols,
:let [pair [r c]]]

(when-not (diagonal-clash? taken pair)
(let [rows (disj rows r)

cols (disj cols c)
taken (conj taken pair)]

(if (and (seq rows)
(seq cols))

(find-solution-iter rows cols taken)
taken))))))

(defn find-solution []
"Finds a set of solution pairs to the 8-queens problem by calling a
recursive function which searches over rows 0-7 and cols 0-7."
(let [rows (set (range 8))

cols (set (range 8))
solution (find-solution-iter rows cols #{})]

solution))

(defn print-solution [solution]
"Print the solution, with X's marking queens and -'s marking empty spaces."
(when (seq solution)

(doseq [r (range 8)]
(doseq [c (range 8)]

(if (solution [r c])
(print "X ")
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(print "- ")))
(print "\n"))))

;; Print the first solution found
(print-solution (find-solution))
;; Output
;
; X - - - - - - -
; - - - - X - - -
; - - - - - - - X
; - - - - - X - -
; - - X - - - - -
; - - - - - - X -
; - X - - - - - -
; - - - X - - - -
;
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