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Abstract

We model songs as a sequence of notes emitted by a hidden Markov
model. A model is trained on a given song, and can be used to ran-
domly generate new, similar songs, as well as study the structure of
the composition. We produce a “signature” for each song, defined
by two feature vectors, based on the emission (e) and transition (t)
probabilities.

1 Introduction

Algorithmic music composition is a subject of much interest in the artifi-
cial intelligence research community. Many approaches have been taken to
produce acceptable music, as the task is not straightforward. The classic
work, Experiments in Music Intelligence by Cope (1996), explores a range of
approaches, from knowledge-based systems, to machine learning approaches.
A knowledge-based system works by following a set of rules defined by the
programmer, and is very difficult to get right, due to its rigidity. Machine
learning, on the other hand, creates a model from existing compositions,
which are used as generators for new compositions. The latter approach is
also employed by Marchini and Purwins (2011). In order to produce sat-
isfying music, it is often necessary to combine the two approaches in some
manner.

The current work employs a pure machine learning approach, training a
hidden Markov model (Rabiner 1989) on a song (Section 3.1). This model
is used as a generator (Section 3.3), as well as a means of observing the
structure of the training songs (Section 3.4).
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Title

1 Auld Lang Syne
2 Barbara Allen
3 Frere Jacques
4 Happy Birthday
5 I’m a Little Teapot
6 Mary Had a Little Lamb
7 Scarborough Fair
8 This Old Man
9 Three Blind Mice
10 Twinkle Twinkle Little Star

Table 1: Table of melodies used, see A for transcriptions.

2 Data

2.1 Format

Training data were provided to the model using the JFugue (Koelle 2002–
2014) MusicString format. The format is ideal, as it allows a song to be
represented as a simple linear sequence of notes. JFugue also has the ability
to convert MusicStrings into MIDI, for easy playback.

2.2 Selected Compositions

The training songs used were limited to simple melodies, listed in Table 1.
The selected songs were taken from Durey and Clements (2001), who used
hidden Markov models to identify melodies. While more complex songs may
be used in the future, such simple melodies may be more accurately modeled
by low-dimensional hidden Markov models.

3 Modeling

3.1 Hidden Markov Model

A hidden Markov model is used to describe each song. A hidden Markov
model can be described by the following (Rabiner 1989):
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1) The set of hidden states, denoted S = {s1, s2, . . . , sN}. At time t, the
current state is denoted qt. These states represent states of the song, which
are determined automatically, and are described in more detail in Section
3.4.

2) The set of possible observation symbols, denoted V = {v1, v2, . . . , vM},
which are emitted by each state with a certain probability distribution. These
observations are the individual notes of the song. There is also a special “end
of song” note appended to the song, which denotes the termination of the
song.

3) The state transition probability distribution A = {aij}, where

aij = P [qt+1 = sj|qt = si], 1 ≤ i, j ≤ N. (1)

This defines the probability that the song will make a transition between
each pair of states.

4) The observation probability distribution in state j, B = {bj(k)}, where

bj(k) = P [vk at t|qt = sj] 1 ≤ j ≤ N

1 ≤ k ≤M. (2)

This defines the probability of a particular note being played while the song
is in a particular state.

5) The initial state distribution π = {πi}, where

πi = P [q1 = si], 1 ≤ i ≤ N. (3)

This defines the probability of the song beginning in any given state.
A model is denoted concisely as λ = (A,B, π), where N and M are

contained within A and B. Once a model is created – either with random
or uniform probabilities – it is improved to better describe a sequence of
observations, O = (o1, o2, o3, . . . , oT ). This is done using the Baum–Welch
algorithm (Baum and Petrie 1966), which iteratively improves the model
in order to find a local maxima for the likelihood P [O|λ]. Likelihood is
determined using the forward algorithm. These algorithms were implemented
according to Mann (2006) and Ibe (2013).

3.2 Model Selection

When the system being modeled has well defined states, N can be chosen
such that each state is described uniquely by the model. However, in the
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case of a song, it is not entirely clear what a state corresponds to. Therefore,
it was necessary to implement a simple algorithm for selecting N .

A minimum and maximum number of states, Nmin and Nmax are provided
manually, in order to restrict the search space. Then the search space is di-
vided into a number of bins, b. A model is trained at Nmax, and b (or fewer)
equally spaced integer values of Ni, such that Nmin ≤ N < Nmax. The likeli-
hood, P [O|λ], is computed for each model, and the model which maximizes
that likelihood is taken. If multiple models maximize the likelihood, the one
with the lowest N is taken. The procedure then repeats with Nmin = Ni−1,
and Nmax = Ni, until the search space cannot be further subdivided.

3.3 Algorithmic Composition

Once a model has been obtained for a song, it can be used as a generator for
new songs. The procedure for song generation is as follows:

1. With probability πi, let the initial state q1 = si.

2. When at time t, the current state is qt = sj, emit note vk with proba-
bility bj(k). If that note is the “end of song” note, terminate, otherwise
let qt+1 = si with probability aji and repeat this step.

Once the procedure terminates, the notes are converted to a MIDI file
using JFugue. Ten compositions have been made for each of the songs of
interest, and can be listened to at

https://dwysocki.github.io/csc466/simple_compositions/

3.4 Signatures

A “signature” is computed for each song, based on its model. It is a 2-tuple
S = (e, t), where e is the emission feature vector, and t is the transition
feature vector.

e is defined as
e = 〈e1, e2, e3, . . .〉, (4)

where ei is the number of states in the model with i notes likely to be emitted.
Here, “likely” means that the probability of a note being emitted is more than
one standard deviation above the mean for that state. If e1 is the dominant
term, that means that the majority of states correspond to precisely one
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Title N t1 t2 t3 t4 t5 t6 e1 e2

Auld Lang Syne 55 32 18 5 0 0 0 55 0
Barbara Allen 55 31 23 1 0 0 0 54 1
Frere Jacques 60 33 17 8 1 1 0 60 0
Happy Birthday 54 34 17 3 0 0 0 54 0
I’m a Little Teapot 43 32 9 2 0 0 0 43 0
Mary Had a Little Lamb 47 25 11 11 0 0 0 47 0
Scarborough Fair 53 44 7 2 0 0 0 53 0
This Old Man 49 24 17 7 1 0 0 49 0
Three Blind Mice 60 25 12 15 5 2 1 60 0
Twinkle Twinkle Little Star 33 15 11 6 2 0 0 34 0

Table 2: Signatures for the selected songs.

note. Interestingly, e2 = e3 = . . . = 0 for every song except Barbara Allen,
which has e2 = 1.

t is defined as
t = 〈t1, t2, t3, . . .〉, (5)

where ti is the number of states in the model with i states likely to be
transitioned to. When a state only transitions to one state, that state is
part of a “linear progression”, and if it transitions to n > 1 states, it is an
“n-way branch”. Linear progressions comprised the majority of states for all
songs tested, with varying distributions of n-way branches. Table 2 lists the
signatures of the songs of interest.

4 Conclusion

This work has demonstrated that hidden Markov models are capable of cap-
turing some of the essence of music, and serve as effective generators. How-
ever, to create truly satisfactory music, one will have to extend the method
beyond a simple hidden Markov model. Extensions of the hidden Markov
model, such as the left–right HMM (Rabiner 1989) and the generalized HMM
(Kulp et al. 1996) may be able to perform better.

Further investigation into the song models should be performed. The
feature vectors may be used for k-means clustering. Linear progressions may
also be extracted, identifying the defining parts of songs.
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A Song Transcriptions

The JFugue MusicStrings used as training data are provided here verbatim.
Auld Lang Syne

C4 F4 E4 F4 A4 G4 F4 G4 A4 G4 F4 F4 A4 C5 D5
D5 C5 A4 A4 F4 G4 F4 G4 A4 G4 F4 D4 D4 C4 F4

Barbara Allen

C4 E4 F4 G4 F4 E4 D4 C4 D4 E4 G4 C5 C5 B4 G4
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C5 C5 A4 G4 F4 A4 G4 E4 D4 C4 D4 E4 F4 G4 F4 E4 D4

Frere Jacques

G4 A4 B4 G4 G4 A4 B4 G4 B4 C5 D5 B4 C5 D5
D5 E5 D5 C5 B4 G4 D5 E5 D5 C5 B4 G4
G4 D4 G4 G4 D4 G4

Happy Birthday

G4 G4 A4 G4 C5 B4
G4 G4 A4 G4 D5 C5
G4 G4 G5 E5 C5 B4 A4
F5 F5 E5 C5 D5 C5

I’m a Little Teapot

C4 D4 E4 F4 G4 C5 A4 C5 G4
F4 F4 G4 E4 E4 D4 D4 E4 C4
C4 D4 E4 F4 G4 C5 A4 C5 G4
C5 C4 D4 E4 F4 E4 D4 C4

Mary Had a Little Lamb

B4 A4 G4 A4 B4 B4 B4 A4 A4 A4 B4 D5 D5
B4 A4 G4 A4 B4 B4 B4 B4 A4 A4 B4 A4 G4

Scarborough Fair

D4 D4 A4 A4 A4 E4 F4 E4 D4
A4 C5 D5 C5 A4 B4 G4 A4
D5 D5 D5 C5 A4 A4 G4 F4 E4 C4
D4 A4 G4 F4 E4 D4 C4 D4

This Old Man

D5 B4 D5 D5 B4 D5 E5 D5 C5 B4 A4 B4 C5
B4 C5 D5 G4 G4 G4 G4 G4 A4 B4 C5 D5
D5 A4 A4 C5 B4 A4 G4

Three Blind Mice

E4 D4 C4 E4 D4 C4 G4 F4 F4 E4 G4 F4 F4 E4
G4 C5 C5 B4 A4 B4 C5 G4 G4
G4 C5 C5 C5 B4 A4 B4 C5 G4 G4
G4 G4 G5 G5 B4 A4 B4 C5 G4 G4 G4 F4 E4 D4 C4
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Twinkle Twinkle Little Star

G4 G4 D5 D5 E5 E5 D5 C5 C5 B4 B4 A4 A4 G4
D5 D5 C5 C5 B4 B4 A4 D5 D5 C5 C5 B4 B4 A4
G4 G4 D5 D5 E5 E5 D5 C5 C5 B4 B4 A4 A4 G4
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