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Stochastic Processes
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Definition

A stochastic process is a collection of random variables {X(t), t ∈ T}
defined on a common probability space indexed by the index set T
which describes the evolution of some system.

(Resnick, 1992)

Daniel Wysocki Markov Processes March 12, 2015 4 / 31



Properties

the evolution of the system is non-deterministic, even if all initial
variables are known
the system may evolve in many (possibly infinite) ways
any given sequence of events may be assigned a probability
the probability of all possible sequences must sum to 1
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History

early motivation for the theory of stochastic processes lies in
Brownian motion
Brownian motion was a phenomenon observed by Robert Brown in
1827

he observed under a microscope the motions of pollen in a fluid
the movements seemed unpredictable

Brownian motion is the outcome of many unpredictable or
unobservable events, each imparting a negligible influence on an
observed phenomenon, but collectively having a significant influence

(Paul and Baschnagel, 2013)
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History (cont.)

Louis Bachelier made his PhD thesis in 1900, applying stochastic
theory to the price of financial assets

the significance of his work was not realized until much later
it contained many of the results of stochastic theory used today
his advisor, Henri Poincaré, when trying to solve the Brownian
motion problem years later, did not realize Bachelier had already
solved it

(Paul and Baschnagel, 2013)

Daniel Wysocki Markov Processes March 12, 2015 7 / 31



History (cont.)

in his 1906 article in Annals of Physics, Albert Einstein described
the mechanisms which drive Brownian molecular motion
this helped strengthen the evidence for atoms and molecules
presented a method for measuring the size of the atom

(Einstein, 1956)
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Markov Processes

a special case of stochastic processes
satisfy the property that the future is dependent only on the
present, not the past
may not be a perfect model of the underlying stochastic process,
but often serves as a good approximation, and reduces the
complexity of the model

(Resnick, 1992)
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History

Andrey Markov, a Russian mathematician, developed a technique,
now known as the Markov chain
he used it to discover patterns in the vowels and consonants of
Alexander Pushkin’s novel, Eugene Onegin

published a summary of his findings in an address to the Imperial
Academy of Sciences in St. Petersberg in 1913

though his work did little to understand the works of Pushkin, it
started a new branch of probability theory, in wide use today

(Hayes and others, 2013)
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Markov Chains
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Definition

Markov chains are Markov processes with a discrete index set T ,
and a countable or finite state space
the Markov chain can be described by only two features: a
1-dimensional initial probability distribution, a(k), and a
2-dimensional transition probability distribution, p(i, j)

a(k) is the probability that the first element of the chain is in state k
p(i, j) is the probability that a system in state i will transition into j

N∑
k=1

a(k) =
N∑

j=1
p(i, j) = 1,

where N is the number of possible states

(Resnick, 1992)
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Graph Representation

A simple Markov process, with two states A and B, can be represented
by this graph

Start

A B

a(A) a(B)

p(A,A)

p(A,B)

p(B,B)

p(B,A)
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Training a Model

a Markov chain may be constructed by observing a sequence of
events, and constructing a transition frequency matrix and an
initial frequency vector
then we normalize the two, such that the rows sum to 1

row stochastic

consider the observed sequences (A,A,B,A,B) and (B,A,B,B,A)

ã =
[
1 1

]
, p̃ =

[
1 3
3 1

]
=⇒ a =

[
1/2 1/2

]
, p =

[
1/4 3/4
3/4 1/4

]
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Generating Sequences

once we have trained a model, we may use it to generate random
sequences, which we shall denote as X
we utilize a random number generator, and with probability a(k)
we choose initial state k, so X0 = k
subsequent states can be found recursively, such that we choose
state Xn with probability p(Xn−1,Xn)
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Graphical Sequence Generation
We can envision the process of generating a sequence as traversing this
graph. At each node, we use the associated transition probabilities to
decide where to go next

Start

A B

a(A) a(B)

p(A,A)

p(A,B)

p(B,B)

p(B,A)
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Hidden Markov Models
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Definition

In a hidden Markov model, the states in the Markov chain are not
directly observable. However, there is a set of observables variables,
which are somehow correlated with the underlying (or hidden) Markov
chain.

(Alpaydin, 2010)
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History

early theory of HMMs developed by Leonard E. Baum and
colleagues at the Institute for Defense Analyses (IDA) in the 1960’s
Jim Baker applied HMMs to speech recognition in the 1970’s, but
was not 100% successful
Jack Ferguson and colleagues at IDA gave a classical series of
lectures in 1980, which boosted the popularity of HMMs
continued usage in speech recognition
now widely used in biological sequencing

(Rabiner, 2015; Yoon, 2009)
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Graph Representation

Start

S1 S2

v1 v2

π1 π2

a11 a12 a22

a21

b1(1) b2(2)
b1(2) b2(1)
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Parameters

a hidden Markov process can be parameterized by the following
variables

the states S = {S1,S2, . . . ,SN}
the observation symbols V = {v1, v2, . . . , vM}
the state transition probabilities
A = [aij ], where aij = P(qt+1 = Sj |qt = Si)
the observation probabilities
B = [bj(m)], where bj(m) = P(Ot = vm|qt = Sj)
the initial state probabilities Π = [πi ] where πi = P(q1 = Si)

the model itself is denoted λ = (A,B,Π)
the observation sequence is denoted O = (O1,O2, . . . ,OT )
the hidden state sequence is denoted Q = (q1, q2, . . . , qT )
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Traffic Light Markov Chain

Suppose we want to model a traffic light as a Markov process. This can
be done using a very simple Markov chain.

There are 3 states, red, yellow, and green. Each state has 2 non-zero
transition probabilities, either it remains the same, or changes in the
progression green → yellow → red → green . . .

Red Yellow Green

Daniel Wysocki Markov Processes March 12, 2015 22 / 31



Traffic Light HMM
Suppose we want to model this same traffic light, but we only have a
video stream from a satellite. The satellite cannot see the light itself,
but can resolve the velocity of the moving cars, both in the same
direction as the light, and the intersecting direction.

The hidden states are red, yellow, and green. The observables are fast
same direction (m), slow same direction (l), fast intersecting direction
(⇔), slow intersecting direction (↔), all stopped (⊗).

Assuming cars don’t run red lights, the HMM might look something like.

R Y G

⊗ l m↔⇔
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Common HMM Problems
Some common problems occur in HMMs, which have standard solutions.

1 Given the model, λ, and a sequence of observations, O, determine
the likelihood of observing that sequence, P(O|λ)

this is solved by the forward algorithm
might be used to detect unusual traffic

2 Given the model, λ, and a sequence of observations, O, find an
optimal state sequence Q

this is solved by the backward algorithm
this will tell us the most likely sequence of traffic light states

3 Given an observation sequence, O, and the dimensions of the model,
N and M , find the model λ that maximizes the probability of O

this is solved by the Baum–Welch algorithm
this is how we initially train the model

(Stamp, 2012)
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Forward Algorithm

1 Let α0(i) = πibi(O0), for i = 0, 1, . . . ,N − 1
2 For t = 1, 2, . . . ,T − 1 and i = 0, 1, . . . ,N − 1, compute

αt(i) =

N−1∑
j=0

αt−1(j)aji

 bi(Ot)

3 Since αt(i) = P(O0,O1, . . . ,Ot , xt = qi |λ), it follows that

P(O|λ) =
N−1∑
i=0

αT−1(i)

(Stamp, 2012)
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Backward Algorithm

1 Let βT−1(i) = 1, for i = 0, 1, . . . ,N − 1.
2 For t = T − 2,T − 3, . . . , 0 and i = 0, 1, . . . ,N − 1, compute

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j)

3 For t = 0, 1, . . . ,T − 2 and i = 0, 1, . . . ,N − 1, define
γt(i) = P(xt = qi |O, λ), which can be written as

γt(i) = αt(i)βt(i)
P(O|λ)

The most likely state at time t is the state qi with maximum γt(i).

(Stamp, 2012)
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Baum–Welch Algorithm

define “di-gamma” as

γt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P(O|λ)

this is related to gamma by

γt(i) =
N−1∑
j=0

γt(i, j)

given γ and di-gamma, we can re-estimate a model using the
following procedure

(Stamp, 2012)
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Baum–Welch Algorithm

1 for i = 0, 1, . . . ,N − 1, let

πi = γ0(i)

2 for i = 0, 1, . . . ,N − 1 and j = 0, 1, . . . ,N − 1, compute

aij =
∑T−2

t=0 γt(i, j)∑T−2
t=0 γt(i)

3 for j = 0, 1, . . . ,N − 1 and k = O0,O1, . . . ,OM−1, compute

bj(k) =

∑
t∈{0,1,...,T−2}

Ot=k
γt(j)∑T−2

t=0 γt(j)

(Stamp, 2012)
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Baum–Welch Algorithm

Now that γt(i, j) and re-estimation have been defined, we can write the
entire algorithm as

1 initialize λ = (A,B, π).
2 compute αt(i), βt(i), γt(i, j) and γt(i)
3 re-estimate the model according the the method just defined
4 if P(O|λ) increases by some threshold, and max iterations has not

been reached, repeat from step 2

(Stamp, 2012)
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Hidden Markov Music

MIDI events (or some invertible function of them) are the
observations
a musical piece is an observation sequence O
a model, λ, is trained on some set of musical pieces, O
the hidden states are completely determined by the observations,
and might correspond to anything

the only human intervention is in choosing the number of states, N

the forward algorithm can be used to find P(O|λ) for a given piece,
which may be interpreted as how well it matches the model
(classification)
new pieces may be generated from the model, by walking through
the model, making choices based on transition and emission
probabilities
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