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Problem 2.4

Calculate 〈x〉, 〈x2〉, 〈p〉, 〈p2〉, σx, and σp, for the nth stationary state of the infinite square well. Check that
the uncertainty principle is satisfied. Which state comes closest to the uncertainty limit?

The nth stationary state is given by

ψn(x) =
√

2
`

sin
(
nπx

`

)
It follows that

〈x〉n =
∫ ∞
−∞

x|ψn(x)|2 dx = 2
`

∫ `

0
x sin2

(
nπx

`

)
dx = `

2

〈x2〉n =
∫ `

0
x2|ψn(x)|2 dx = `2

6

[
2− 3

(nπ)2

]
〈p〉n =

∫ `

0
ψ∗n

(
~
ı

∂

∂x

)
ψn dx = −2ı~

`

∫ `

0
sin
(
nπx

`

)
∂

∂x
sin
(
nπx

`

)
dx

= −2ı~
nπ

∫ `

0
sin
(
nπx

`

)
cos
(
nπx

`

)
dx = 0

〈p2〉n =
∫ `

0
ψ∗n

(
~
ı

∂

∂x

)2
ψn dx = −~2

∫ `

0
sin
(
nπx

`

)
∂2

∂x2 sin
(
nπx

`

)
=

= 2
`

(
π~n
`

)2 ∫ `

0
sin2

(
nπx

`

)
dx =

(
nπ~
`

)2

σx =
√
〈x2〉n − 〈x〉2n =

√
`2

6

[
2− 3

(nπ)2

]
− `2

22 = `

2
√

3

√
1− 6

(nπ)2

σp = 〈p2〉n =
(
nπ~
`

)
σxσp = `

2
√

3

√
1− 6

(nπ)2

(
nπ~
`

)
= ~

√
n2π2 − 6

12

For n = 1 : σxσp = ~
√
π2 − 6

12 ≈ 0.5678~ > ~
2

For n→∞ : σxσp →∞

Problem 2.5

A particle in the infinite square well has its initial wave function an even mixture of the first two stationary
states:

Ψ(x, 0) = A
[
ψ1(x) + ψ2(x)

]
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a. Normalize Ψ(x, 0).

1 = 〈Ψ|Ψ〉 = A2 〈(ψ1 + ψ2)
∣∣(ψ1 + ψ2)

〉
= A2 (〈ψ1|ψ1〉+ 〈ψ2|ψ2〉

)
= 2A2 =⇒ |A| = 1√

2
=
√

2
2

Ψ(x, 0) =
√

2
2
[
ψ1(x) + ψ2(x)

]
b. Find Ψ(x, t) and |Ψ(x, t)|2. Express the latter as a sinusoidal function of time, as in Example 2.1. To

simplify the result, let ω ≡ π2~/2m`2.

exp
(
−ıEnt/~

)
= exp

(
−n2ωt

)
Ψ(x, t) =

√
2

2
[
ψ1(x) exp(−ωt) + ψ2(x) exp(−4ωt)

]
ρ(x) =

∣∣Ψ(x, t)
∣∣2 = 1

2
[
ψ∗1ψ1 + ψ∗2ψ2 + ψ∗2ψ1 exp(3ωt) + ψ∗1ψ2 exp(−3ωt)

]
the stationary states are real, so ψ∗n = ψn

ρ(x) = 1
2

{
ψ2

1 + ψ2
2 + ψ1ψ2

[
exp(3ωt) + exp(−3ωt)

]}
using Euler’s formula, we can rewrite this as

ρ(x) = 1
2

{
ψ2

1 + ψ2
2 + ψ1ψ2

[
cos(3ωt) + ı sin(3ωt) + cos(−3ωt) + ı sin(−3ωt)

]}
= 1

2

{
ψ2

1 + ψ2
2 + ψ1ψ2

[
cos(3ωt) + ı sin(3ωt) + cos(3ωt)− ı sin(3ωt)

]}
= 1

2

[
ψ2

1 + ψ2
2 + 2ψ1ψ2 cos(3ωt)

]
substituting ψn(x) =

√
2
`

sin
(
nπx

`

)
ρ(x) = 1

`

[
sin2

(
πx

`

)
+ sin2

(
2πx
`

)
+ 2 sin

(
πx

`

)
sin
(

2πx
`

)
cos(3ωt)

]

c. Compute 〈x〉. Notice that it oscillates in time. What is the angular frequency of the oscillation? The
amplitude?

〈x〉 = 〈Ψ|xΨ〉 =
∫ `

0
xρ(x) dx = 1

`

∫ `

0
x

[
sin2

(
πx

`

)
+ sin2

(
2πx
`

)
+ 2 sin

(
πx

`

)
sin
(

2πx
`

)
cos(3ωt)

]
dx

= 1
`

[∫ `

0
x sin2

(
πx

`

)
dx+

∫ `

0
x sin2

(
2πx
`

)
dx+ 2

∫ `

0
x sin

(
πx

`

)
sin
(

2πx
`

)
cos(3ωt) dx

]

= 1
`

[
`2

4 + `2

4 − 2 8`2

9π2 cos(3ωt)
]

= `

2 −
16`
9π2 cos(3ωt)

The angular frequency is 3ω or 3π2~/2m`2, and the amplitude is 16`/9π2, which is approximately 0.18`, well
below `/2.
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d. Compute 〈p〉. We could do this by finding 〈Ψ|p̂Ψ〉, but as the book suggests, there is a faster way,
namely, finding d〈x〉

dt

〈p〉 = d 〈x〉
dt = d

dt

[
`

2 −
16`
9π2 cos(3ωt)

]
= 0 + (3ω) 16`

9π2 sin(3ωt) = ω
16`
3π2 sin(3ωt)

substituting ω gives

〈p〉 = π2~
2m`2

16`
3π2 sin(3ωt) = 8~

3m` sin(3ωt)

e. If you measured the energy of this particle, what values might you get, and what is the probability of
getting each of them? Find the expectation value of H. How does it compare with E1 and E2?

The wavefunction is a superposition of only two components, c1ψ1(x)ϕ1(t) and c2ψ2(x)ϕ2(t), therefore we
may rewrite it as such

Ψ(x, t) =
2∑

n=1
cnψn(x)ϕn(t),

where cn has already been found to be
√

2/2. The probability of getting the nth energy, En, is given by the
square of the coefficient, cn, thus Pr(En) = |cn|2 =

∣∣∣√2/2
∣∣∣2 = 1/2. In other words, each of the two energies

has an equal probability of being observed.

Since En is given by (nπ~)2/(2m`2), E1 = π2~2/2m`2, and E2 = 4π2~2/2m`2. The expectation value of H
is thus

〈H〉 = c1E1 + c2E2 = 1
2

(
π2~2

2m`2 + 4π2~2

2m`2

)
= 5π2~2

4m`2

Problem 2.7

A particle in the infinite square well has the initial wave function

Ψ(x, 0) = A

{
x, 0 ≤ x ≤ a/2,
a− x, a/2 ≤ x ≤ a.

a. Sketch Ψ(x, 0), and determine the constant A.

1 =
∫ ∞
−∞

∣∣Ψ(x, 0)
∣∣2 dx = |A|2

(∫ a/2

0
x2 dx+

∫ a

a/2
(a− x)2 dx

)
=⇒ |A| =

√
12
a3

Ψ(x, 0) =
√

12
a3

{
x, 0 ≤ x ≤ a/2,
a− x, a/2 ≤ x ≤ a.
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b. Find Ψ(x, t).

Ψ(x, 0) =
∞∑

n=1
cnψn(x)

=⇒ cn =
〈
ψn

∣∣Ψ(x, 0)
〉

=
√

2
a

∫ a

0
sin
(
nπx

a

)
Ψ(x, 0) dx

=
√

2
a

√
12
a3

[∫ a/2

0
x sin

(
nπx

a

)
dx+

∫ a

a/2
(a− x) sin

(
nπx

a

)
dx
]

=
√

24
a4

[
2a2

n2π2 sin
(
nπ

2

)]
= 4
√

6
n2π2 sin

(
nπ

2

)

Ψ(x, t) =
∞∑

n=1
cnψn(x)ϕn(t) = 4

√
6

π2

√
2
a

∞∑
n=1

sin
(
nπ

2

)
sin
(
nπx

a

)
exp
(
−ıEnt/~

)
= 8
π2

√
3
a

∞∑
n=1

sin
(
nπ

2

)
sin
(
nπx

a

)
exp
(
−ıEnt/~

)
c. What is the probability that a measurement of the energy would yield the value E1?

Pr(E1) = |c1|2 =

∣∣∣∣∣4
√

6
π2 sin

(
π

2

)∣∣∣∣∣
2

= 96
π4 ≈ 0.9855

Interesting observation: since the nth coefficient has a factor of sin
(
nπ/2

)
, only the odd harmonics are

non-zero. This is much like a clarinet, and, if our Lasso results are to be trusted, OGLE-LMC-CEP-1406.

4



d. Find the expectation value of the energy.

Assuming by “energy”, total energy is implied, this is the expectation value of the Hamiltonian, given by
Equation 2.39 as

〈H〉 =
∞∑

n=1
|cn|2En =

∞∑
n=1


∣∣∣∣∣ 4
√

6
n2π2 sin

(
nπ

2

)∣∣∣∣∣
2

︸ ︷︷ ︸
cn

1
2m

(
nπ~
`

)2

︸ ︷︷ ︸
En


pulling the terms independent of n out of the sum gives

〈H〉 = 48~2

π2m`2

∞∑
n=1

1
n2 sin2

(
nπ

2

)
sin2

(
nπ

2

)
is zero for even n and one for odd n, allowing us to simplify the summation to

〈H〉 = 48~2

π2m`2

∞∑
n=0

1
(2n+ 1)2 = 48~2

π2m`2
π2

8 = 6~2

m`2

Problem 2.10

a. Construct ψ2(x)

We will construct the 2nd stationary state by applying the ladder operator on ψ1(x).

ψ2(x) = 1√
2!

(a+)2ψ0(x) = 1√
2!
a+ψ1(x) =

= 1√
2

4

√
mω

π~
1√

2~mω
(mωx− ıp)

√
2mω
~

x exp
(
−mω2~ x

2
)

= 1√
2

1
~

4

√
mω

π~

(
mωx− ı~

ı

∂

∂x

)
x exp

(
−mω2~ x

2
)

= 1√
2

1
~

4

√
mω

π~

(
mωx− ~

∂

∂x

)
x exp

(
−mω2~ x

2
)

= 1
~
√

2
4

√
mω

π~

mωx2 exp
(
−mω2~ x

2
)
− ~

∂

∂x

[
x exp

(
−mω2~ x

2
)]

= 1
~
√

2
4

√
mω

π~

{
mωx2 exp

(
−mω2~ x

2
)
− ~

∂x

∂x
exp
(
−mω2~ x

2
)
− ~x

∂

∂x
exp
(
−mω2~ x

2
)}

= 1
~
√

2
4

√
mω

π~

{
mωx2 exp

(
−mω2~ x

2
)
− ~ exp

(
−mω2~ x

2
)
− ~x

(
−mω2~ 2x

)
exp
(
−mω2~ x

2
)}

= 1
~
√

2
4

√
mω

π~
exp
(
−mω2~ x

2
){

mωx2 − ~− ~x
(
−mω2~ 2x

)}

= 1
~
√

2
4

√
mω

π~
exp
(
−mω2~ x

2
)(

mωx2 − ~ +mωx2
)

= 1
~
√

2
4

√
mω

π~
exp
(
−mω2~ x

2
)(

2mωx2 − ~
)

= 1√
2

4

√
mω

π~
exp
(
−mω2~ x

2
)(

2mω
~

x2 − 1
)
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b. Sketch ψ0, ψ1, and ψ2.
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x
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c. Check the orthogonality of ψ0, ψ1, and ψ2, by explicit integration. Hint: If you exploit the even-ness
and odd-ness of the functions, there is really only one integral left to do.

As the book suggests, we may exploit the fact that the even-numbered stationary states are even, while the
odd-numbered ones are oddl, as can be seen from the plot above. This means ψ0 and ψ2 are both orthogonal
to ψ1, and we merely need to check the orthogonality of ψ0 and ψ2. If they are orthogonal, their inner
product should be zero.

〈ψ0|ψ2〉 =
∫ ∞
−∞

ψ∗0(x)ψ2(x) dx =
∫ ∞
−∞

ψ0(x)ψ2(x) dx

=
∫ ∞
−∞

4

√
mω

π~
exp
(
−mω2~ x

2
)

1√
2

4

√
mω

π~
exp
(
−mω2~ x

2
)(

2mω
~

x2 − 1
)

dx

= 1√
2

√
mω

π~

∫ ∞
−∞

exp
(
−mω

~
x2
)(

2mω
~

x2 − 1
)

dx

Let u = mω/~

〈ψ0|ψ2〉 = 1√
2

√
u

π

∫ ∞
−∞

exp
(
−ux2

)(
2ux2 − 1

)
dx = 0
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