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Problem 3.16 Solve (p− 〈p〉)Ψ = ıa(x− 〈x〉)Ψ for Ψ(x). Note that 〈x〉, 〈p〉, and a are real constants.

pΨ =
[
ıa(x− 〈x〉) + 〈p〉

]
Ψ

dΨ
dx = ı

~
[
ıa(x− 〈x〉) + 〈p〉

]
Ψ

dΨ
Ψ =

[
−a
~

(x− 〈x〉) + ı 〈p〉
~

]
dx∫ 1

Ψ dΨ =
∫ [
−a
~

(x− 〈x〉) + ı 〈p〉
~

]
dx

ln Ψ = − a

2~ (x− 〈x〉)2 + ı 〈p〉x
~

+ C

Ψ(x) = exp(C) exp
(
− a

2~ (x− 〈x〉)2
)

exp
(
ı 〈p〉x
~

)
= A exp

(
− a

2~ (x− 〈x〉)2
)

exp
(
ı 〈p〉x
~

)

Problem 3.18 Test the energy-time uncertainty principle for the wave function in Problem 2.5 and the
observable x, by calculating σH , σx, and d〈x〉 /dt exactly.

The wave function in Problem 2.5 is given by

Ψ(x, t) =
√

2
2 [ψ1(x)ϕ1(t) + ψ2(x)ϕ2(t)], where ψn(x) =

√
2
a

sin
(
nπx

a

)
, and ϕn(t) = exp

(
−n2ωt

)
or more simply

Ψ(x, t) = 1√
a

[
sin
(
πx

a

)
exp(−ωt) + sin

(
2πx
a

)
exp(−4ωt)

]
,

and solving for the probability density function we get

ρ(x) =
∣∣Ψ(x, t)

∣∣2 = 1
a

[
sin2

(
πx

a

)
+ sin2

(
2πx
a

)
+ 2 sin

(
πx

a

)
sin
(

2πx
a

)
cos(3ωt)

]
.

Note that all of the above was done in the 2nd homework assignment. For more detailed steps please refer to
that.

Since σQ is given by
√
〈Q2〉 − 〈Q〉2 for any operator Q, we will first have to find some expectation values.

〈x〉 was shown in the 2nd assignment to be

〈x〉 = a

2 −
16a
9π2 cos(3ωt),

and d〈x〉 / dt was shown to be
d 〈x〉

dt = 8~
3ma sin(3ωt).

Now we will find
〈
x2〉
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〈x2〉 = 〈Ψ|x2Ψ〉 =
∫ a

0
x2ρ(x) dx = 1

a

∫ a

0
x2

[
sin2

(
πx

a

)
+ sin2

(
2πx
a

)
+ 2 sin

(
πx

a

)
sin
(

2πx
a

)
cos(3ωt)

]

= 1
a

[∫ a

0
x2 sin2

(
πx

a

)
dx+

∫ a

0
x2 sin2

(
2πx
a

)
dx+ 2 cos(3ωt)

∫ a

0
x2 sin

(
πx

a

)
sin
(

2πx
a

)
dx
]

(integration done with SymPy and Wolfram|Alpha)

〈x2〉 = 1
a


[
a3

6 −
a3

4π2

]
+
[
a3

6 −
a3

16π2

]
+ 2 cos(3ωt)

[
− 8a3

9π2

]
= a3

a

[
1
6 −

1
4π2 + 1

6 −
1

16π2 − 2 cos(3ωt) 8
9π2

]
= a2

[
1
3 −

5
16π2 − 2 cos(3ωt) 8

9π2

]
(note that lcm(3, 16π2, 9π2) = 144π2)

〈x2〉 = a2

144π2

[
48π2 − 5 · 9− 2 cos(3ωt)16 · 8

]
= a2

144π2

[
48π2 − 45− 256 cos(3ωt)

]
=
(

a

12π

)2 [
48π2 − 45− 256 cos(3ωt)

]
〈x〉2 = a2

[
1
2 −

16
9π2 cos(3ωt)

]2
= a2

[
1
4 −

16
9π2 cos(3ωt) +

(
16
9π2 cos(3ωt)

)2
]

σ2
x = 〈x2〉 − 〈x〉2 = a2

{
48
144 −

45
144π2 −

16
9π2 cos(3ωt)− 1

4 + 16
9π2 cos(3ωt) +

(
16
9π2 cos(3ωt)

)2
}

= a2

[
1
12 −

5
16π2 +

(
16
9π2 cos(3ωt)

)2
]

〈H〉 was also found in the previous assignment, and has value

〈H〉 = 5π2~2

4ma2 .

Now, instead of finding
〈
H2〉, we can invoke Equation 3.21 to skip directly to σH .
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σ2
H = 〈(Ĥ − 〈H〉)Ψ|(Ĥ − 〈H〉)Ψ〉 , where

(Ĥ − 〈H〉) = − ~2

2m
∂2

∂x2 − 〈H〉

σ2
H =

∫ a

0

(
− ~2

2m
∂2Ψ∗

∂x2 − 〈H〉Ψ
∗

)(
− ~2

2m
∂2Ψ
∂x2 − 〈H〉Ψ

)
dx

=
∫ a

0

[
~4

4m2
∂2Ψ∗

∂x2
∂2Ψ
∂x2 + 〈H〉2 Ψ∗Ψ + 〈H〉Ψ ~2

2m
∂2Ψ∗

∂x2 + 〈H〉Ψ∗ ~2

2m
∂2Ψ
∂x2

]
dx

= ~4

4m2

∫ a

0

∂2Ψ∗

∂x2
∂2Ψ
∂x2 dx+ 〈H〉2

∫ a

0
Ψ∗Ψ dx+ 〈H〉 ~

2

2m

∫ a

0
Ψ ∂2Ψ∗

∂x2 dx+ 〈H〉 ~
2

2m

∫ a

0
Ψ∗ ∂

2Ψ
∂x2 dx

note that Ψ is real-valued, and therefore the complex conjugate is the identity function

σ2
H = ~4

4m2

∫ a

0

(
∂2Ψ
∂x2

)2

dx+ 〈H〉2
∫ a

0
Ψ(x)2 dx+ 〈H〉 ~

2

2m

∫ a

0
Ψ ∂2Ψ
∂x2 dx+ 〈H〉 ~

2

2m

∫ a

0
Ψ ∂2Ψ
∂x2 dx

= ~4

4m2

∫ a

0

(
∂2Ψ
∂x2

)2

dx+ 〈H〉2 + 2 〈H〉 ~
2

2m

∫ a

0
Ψ ∂2Ψ
∂x2 dx

using a computer algebra system I find the derivatives of Ψ, and evaluate the integrals

∂2Ψ
∂x2 = − π2

√
a5

(
exp(3ωt) + 8 cos

(
πx

a

))
exp(−4ωt) sin

(
πx

a

)
∫ a

0

(
∂2Ψ
∂x2

)2

dx = π4

a5

(
a

2 exp(6ωt) + 8a
)

exp(−8ωt)∫ a

0
Ψ ∂2Ψ
∂x2 dx = −π

2

a3

(
a

2 exp(6ωt) + 2a
)

exp(−8ωt)

plugging back into σ2
H and simplifying with a CAS, we get

σ2
H = π4~4

16a4m2

(
25 exp(8ωt)− 8 exp(6ωt)− 8

)
exp(−8ωt)

Finally, we subsitute σH and σx into the energy-time uncertainty principle

∆E = σH =
√

π4~4

16a4m2

(
25 exp(8ωt)− 8 exp(6ωt)− 8

)
exp(−8ωt)

= π2~2

4a2m

√(
25 exp(8ωt)− 8 exp(6ωt)− 8

)
exp(−8ωt)

∆t = σx∣∣d〈x〉 /dt
∣∣ = a

√
1
12 −

5
16π2 +

(
16
9π2 cos(3ωt)

)2 3ma
8~

1
sin(3ωt)

We want to show that ∆E∆t ≥ ~/2, but I’ve run out of time to show this. Hopefully taking that product
would simplify to something which can be shown to be at least ~/2.
Problem 3.31 Virial theorem. Use Equation 3.71 to show that

d
dt 〈xp〉 = 2 〈T 〉 −

〈
x

dV
dx

〉
,

where T is the kinetic energy (H = T + V ). In a stationary state the left side is zero (why?) so

2 〈T 〉 =
〈
x

dV
dx

〉
.
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This is called the virial theorem. Use it to prove that 〈T 〉 = 〈V 〉 for stationary states of the harmonic
oscillator, and check that this is consistent with the results you got in Problems 2.11 and 2.12.

Equation 3.71 states that
d
dt 〈Q〉 = ı

~
〈[Ĥ, Q̂]〉+

〈
∂Q̂

∂t

〉
By inspecting the equation we are seeking to solve, Q = xp, and Q̂ = xp̂. We will begin by expanding [Ĥ, xp̂].
First, recall that

p̂ = ~
ı

∂

∂x
and Ĥ = p̂2

2m + V (x) = − ~2

2m
∂2

∂x2 + V (x).

By the definition of the commutator, it follows that

[Ĥ, xp̂] (f) = Ĥxp̂(f)− xp̂Ĥ(f)

=
(
− ~2

2m
∂2

∂x2 + V (x)
)
x

(
~
ı

∂

∂x

)
(f)− x

(
~
ı

∂

∂x

)(
− ~2

2m
∂2

∂x2 + V (x)
)

(f)

= ~
ı

(− ~2

2m
∂2

∂x2 + V (x)
)
x

(
∂f

∂x

)
− x
(
∂

∂x

)(
− ~2

2m
∂2f

∂x2 + V (x)f(x)
)

= ~
ı

[
− ~2

2m
∂2

∂x2

(
x
∂f

∂x

)
+ xV (x) ∂f

∂x
+ x

~2

2m
∂3f

∂x3 − x
∂

∂x

(
V (x)f(x)

)]

= ~
ı

− ~2

2m

(
2 ∂

2f

∂x2 + x
∂3f

∂x3

)
+ xV (x) ∂f

∂x
+ x

~2

2m
∂3f

∂x3 − x
∂V

∂x
f(x)− xV (x) ∂f

∂x


= ~
ı

[
−~2

m

∂2f

∂x2 − x
∂V

∂x
f(x)

]
now we remove the test

[Ĥ, xp̂] = ~
ı

[
−~2

m

∂2

∂x2 − x
∂V

∂x

]
and substitute back into Equation 3.71

d
dt 〈xp〉 = ı

~

〈
−~
ı

(
~2

m

∂2

∂x2 + x
∂V

∂x

)〉
+
〈
∂(xp̂)
∂t

〉

=
〈
−~2

m

∂2

∂x2

〉
−
〈
x
∂V

∂x

〉
+
〈
∂(xp̂)
∂t

〉
= 2 〈T 〉 −

〈
x
∂V

∂x

〉
+
〈
∂(xp̂)
∂t

〉

In the typical case, the operator Q̂ does not depend on time, and therefore we can neglect the time derivative
of xp̂, leaving us with the desired result:

d
dt 〈xp〉 = 2 〈T 〉 −

〈
x
∂V

∂x

〉
.

In a stationary state, nothing depends on time, and therefore the time derivative of the expectation value of
xp is zero, leaving us with

2 〈T 〉 =
〈
x
∂V

∂x

〉
.
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The harmonic oscillator has potential V (x) = mω2x2/2, and so dV
dx = mω2x, meaning

〈
xdV

dx

〉
=
〈
mω2x2〉 =

〈2V 〉, therefore 2 〈T 〉 = 2 〈V 〉, or simply 〈T 〉 = 〈V 〉.
Problem 3.38 The Hamiltonian for a certain three-level system is represented by the matrix

H = ~ω

1 0 0
0 2 0
0 0 2

.
Two other observables, A and B, are represented by the matrices

A = λ

0 1 0
1 0 0
0 0 2

 ,B = µ

2 0 0
0 0 1
0 1 0

 ,

where ω, λ, and µ are positive real numbers.

a. Find the eigenvalues and (normalized) eigenvectors of H, A, and B.

(Note that all eigenvalues and eigenvectors were found with the assistance of numpy.linalg.eig)

H has eigenvalues E1 = ~ω, E2 = E3 = 2~ω, and eigenvectors |H1〉 =
(

1
0
0

)
, |H2〉 =

(
0
1
0

)
, and |H3〉 =

(
0
0
1

)
.

A has eigenvalues a1 = λ, a2 = −λ, a3 = 2λ, and eigenvectors |A1〉 = (1/
√

2)
(

1
1
0

)
, |A2〉 = (1/

√
2)
(−1

1
0

)
,

|A3〉 =
(

0
0
1

)
.

B has eigenvalues b1 = µ, b2 = −µ, b3 = 2µ, and eigenvectors |B1〉 = (1/
√

2)
(

0
1
1

)
, |B2〉 = (1/

√
2)
( 0

1
−1

)
,

|B3〉 =
(

1
0
0

)
.

b. Suppose the system starts out in the generic state

|S(0)〉 =
(

c1
c2
c3

)
,

with |c1|2 + |c2|2 + |c3|2 = 1. Find the expectation values (at t = 0) of H, A, and B.

〈H〉 = 〈S(0)|H |S(0)〉 = ( c∗
1 c∗

2 c∗
3 )~ω

1 0 0
0 2 0
0 0 2

( c1
c2
c3

)

= ~ω( c∗
1 c∗

2 c∗
3 )
(

c1
2c2
2c3

)
= ~ω

(
|c1|2 + 2

(
|c2|2 + |c3|2

))
recall: 1 = |c1|2 + |c2|2 + |c3|2 =⇒ 1− |c1|2 = |c2|2 + |c3|2

〈H〉 = ~ω
(
|c1|2 + 2

(
1− |c1|2

))
= ~ω

(
2− |c1|2

)
,

〈A〉 = 〈S(0)|A |S(0)〉 = ( c∗
1 c∗

2 c∗
3 )λ

0 1 0
1 0 0
0 0 2

( c1
c2
c3

)
= λ( c∗

1 c∗
2 c∗

3 )
( c2

c1
2c3

)
= λ

(
c∗

1c2 + c∗
2c1 + 2|c3|2

)
,

〈B〉 = 〈S(0)|B |S(0)〉 = ( c∗
1 c∗

2 c∗
3 )µ

2 0 0
0 0 1
0 1 0

( c1
c2
c3

)
= µ( c∗

1 c∗
2 c∗

3 )
( 2c1

c3
c2

)
= µ

(
2|c1|2 + c∗

2c3 + c∗
3c2

)
.
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c. What is |S(t)〉? If you measured the energy of this state (at time t), what values might you get, and
what is the probability of each? Answer the same questions for A and for B.

We obtain |S(t)〉 by writing |S(0)〉 as a linear combination of time-independent eigenstates, and then tacking
on the time dependence, exp

(
−ıEnt/~

)
.

One can intuitively write |S(0)〉 as a linear combination of H’s eigenvectors, given by

|S(0)〉 =
(

c1
c2
c3

)
=
(

c1
0
0

)
+
( 0

c2
0

)
+
( 0

0
c3

)
= c1 |H1〉+ c2 |H2〉+ c3 |H3〉 .

Then by tacking on the time-dependence we obtain |S(t)〉

|S(t)〉 = c1 |H1〉 exp
(
−ıE1t/~

)
+ c2 |H2〉 exp

(
−ıE2t/~

)
+ c3 |H3〉 exp

(
−ıE3t/~

)
.

If you were to measure the energy of the state, there is a probability |c1|2 that you would observe E1 = ~ω,
and a probability |c2|2 + |c3|2 that you would observe E2 = E3 = 2~ω.
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