Griffiths Chapter 3 (2)

Dan Wysocki

March 5, 2015

Problem 3.16 Solve $(p-\langle p\rangle) \Psi=\imath a(x-\langle x\rangle) \Psi$ for $\Psi(x)$. Note that $\langle x\rangle,\langle p\rangle$, and a are real constants.

$$
\begin{aligned}
p \Psi & =[\imath a(x-\langle x\rangle)+\langle p\rangle] \Psi \\
\frac{\mathrm{d} \Psi}{\mathrm{~d} x} & =\frac{\imath}{\hbar}[\imath a(x-\langle x\rangle)+\langle p\rangle] \Psi \\
\frac{\mathrm{d} \Psi}{\Psi} & =\left[-\frac{a}{\hbar}(x-\langle x\rangle)+\frac{\imath\langle p\rangle}{\hbar}\right] \mathrm{d} x \\
\int \frac{1}{\Psi} \mathrm{~d} \Psi & =\int\left[-\frac{a}{\hbar}(x-\langle x\rangle)+\frac{\imath\langle p\rangle}{\hbar}\right] \mathrm{d} x \\
\ln \Psi & =-\frac{a}{2 \hbar}(x-\langle x\rangle)^{2}+\frac{\imath\langle p\rangle x}{\hbar}+C \\
\Psi(x) & =\exp (C) \exp \left(-\frac{a}{2 \hbar}(x-\langle x\rangle)^{2}\right) \exp \left(\frac{\imath\langle p\rangle x}{\hbar}\right) \\
& =A \exp \left(-\frac{a}{2 \hbar}(x-\langle x\rangle)^{2}\right) \exp \left(\frac{\imath\langle p\rangle x}{\hbar}\right)
\end{aligned}
$$

Problem 3.18 Test the energy-time uncertainty principle for the wave function in Problem 2.5 and the observable x, by calculating σ_{H}, σ_{x}, and $\mathrm{d}\langle x\rangle / \mathrm{d} t$ exactly.
The wave function in Problem 2.5 is given by

$$
\Psi(x, t)=\frac{\sqrt{2}}{2}\left[\psi_{1}(x) \varphi_{1}(t)+\psi_{2}(x) \varphi_{2}(t)\right], \text { where } \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right), \text { and } \varphi_{n}(t)=\exp \left(-n^{2} \omega t\right)
$$

or more simply

$$
\Psi(x, t)=\frac{1}{\sqrt{a}}\left[\sin \left(\frac{\pi x}{a}\right) \exp (-\omega t)+\sin \left(\frac{2 \pi x}{a}\right) \exp (-4 \omega t)\right]
$$

and solving for the probability density function we get

$$
\rho(x)=|\Psi(x, t)|^{2}=\frac{1}{a}\left[\sin ^{2}\left(\frac{\pi x}{a}\right)+\sin ^{2}\left(\frac{2 \pi x}{a}\right)+2 \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) \cos (3 \omega t)\right] .
$$

Note that all of the above was done in the 2nd homework assignment. For more detailed steps please refer to that.
Since σ_{Q} is given by $\sqrt{\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}}$ for any operator Q, we will first have to find some expectation values. $\langle x\rangle$ was shown in the 2 nd assignment to be

$$
\langle x\rangle=\frac{a}{2}-\frac{16 a}{9 \pi^{2}} \cos (3 \omega t)
$$

and $\mathrm{d}\langle x\rangle / \mathrm{d} t$ was shown to be

$$
\frac{\mathrm{d}\langle x\rangle}{\mathrm{d} t}=\frac{8 \hbar}{3 m a} \sin (3 \omega t) .
$$

Now we will find $\left\langle x^{2}\right\rangle$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle=\left\langle\Psi \mid x^{2} \Psi\right\rangle & =\int_{0}^{a} x^{2} \rho(x) \mathrm{d} x=\frac{1}{a} \int_{0}^{a} x^{2}\left[\sin ^{2}\left(\frac{\pi x}{a}\right)+\sin ^{2}\left(\frac{2 \pi x}{a}\right)+2 \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) \cos (3 \omega t)\right] \\
& =\frac{1}{a}\left[\int_{0}^{a} x^{2} \sin ^{2}\left(\frac{\pi x}{a}\right) \mathrm{d} x+\int_{0}^{a} x^{2} \sin ^{2}\left(\frac{2 \pi x}{a}\right) \mathrm{d} x+2 \cos (3 \omega t) \int_{0}^{a} x^{2} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) \mathrm{d} x\right]
\end{aligned}
$$

(integration done with SymPy and Wolfram|Alpha)

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{1}{a}\left\{\left[\frac{a^{3}}{6}-\frac{a^{3}}{4 \pi^{2}}\right]+\left[\frac{a^{3}}{6}-\frac{a^{3}}{16 \pi^{2}}\right]+2 \cos (3 \omega t)\left[-\frac{8 a^{3}}{9 \pi^{2}}\right]\right\} \\
& =\frac{a^{3}}{a}\left[\frac{1}{6}-\frac{1}{4 \pi^{2}}+\frac{1}{6}-\frac{1}{16 \pi^{2}}-2 \cos (3 \omega t) \frac{8}{9 \pi^{2}}\right]=a^{2}\left[\frac{1}{3}-\frac{5}{16 \pi^{2}}-2 \cos (3 \omega t) \frac{8}{9 \pi^{2}}\right]
\end{aligned}
$$

(note that $\left.\operatorname{lcm}\left(3,16 \pi^{2}, 9 \pi^{2}\right)=144 \pi^{2}\right)$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{a^{2}}{144 \pi^{2}}\left[48 \pi^{2}-5 \cdot 9-2 \cos (3 \omega t) 16 \cdot 8\right]=\frac{a^{2}}{144 \pi^{2}}\left[48 \pi^{2}-45-256 \cos (3 \omega t)\right] \\
& =\left(\frac{a}{12 \pi}\right)^{2}\left[48 \pi^{2}-45-256 \cos (3 \omega t)\right] \\
\langle x\rangle^{2} & =a^{2}\left[\frac{1}{2}-\frac{16}{9 \pi^{2}} \cos (3 \omega t)\right]^{2}=a^{2}\left[\frac{1}{4}-\frac{16}{9 \pi^{2}} \cos (3 \omega t)+\left(\frac{16}{9 \pi^{2}} \cos (3 \omega t)\right)^{2}\right] \\
\sigma_{x}^{2} & =\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=a^{2}\left\{\frac{48}{144}-\frac{45}{144 \pi^{2}}-\frac{16}{9 \pi^{2}} \cos (3 \omega t)-\frac{1}{4}+\frac{16}{9 \pi^{2}} \cos (3 \omega t)+\left(\frac{16}{9 \pi^{2}} \cos (3 \omega t)\right)^{2}\right\} \\
& =a^{2}\left[\frac{1}{12}-\frac{5}{16 \pi^{2}}+\left(\frac{16}{9 \pi^{2}} \cos (3 \omega t)\right)^{2}\right]
\end{aligned}
$$

$\langle H\rangle$ was also found in the previous assignment, and has value

$$
\langle H\rangle=\frac{5 \pi^{2} \hbar^{2}}{4 m a^{2}}
$$

Now, instead of finding $\left\langle H^{2}\right\rangle$, we can invoke Equation 3.21 to skip directly to σ_{H}.

$$
\begin{aligned}
\sigma_{H}^{2} & =\langle(\hat{H}-\langle H\rangle) \Psi \mid(\hat{H}-\langle H\rangle) \Psi\rangle, \text { where } \\
(\hat{H}-\langle H\rangle) & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-\langle H\rangle \\
\sigma_{H}^{2} & =\int_{0}^{a}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}-\langle H\rangle \Psi^{*}\right)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}-\langle H\rangle \Psi\right) \mathrm{d} x \\
& =\int_{0}^{a}\left[\frac{\hbar^{4}}{4 m^{2}} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \frac{\partial^{2} \Psi}{\partial x^{2}}+\langle H\rangle^{2} \Psi^{*} \Psi+\langle H\rangle \Psi \frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}+\langle H\rangle \Psi^{*} \frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}\right] \mathrm{d} x \\
& =\frac{\hbar^{4}}{4 m^{2}} \int_{0}^{a} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x+\langle H\rangle^{2} \int_{0}^{a} \Psi^{*} \Psi \mathrm{~d} x+\langle H\rangle \frac{\hbar^{2}}{2 m} \int_{0}^{a} \Psi \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \mathrm{~d} x+\langle H\rangle \frac{\hbar^{2}}{2 m} \int_{0}^{a} \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x
\end{aligned}
$$

note that Ψ is real-valued, and therefore the complex conjugate is the identity function

$$
\begin{aligned}
\sigma_{H}^{2} & =\frac{\hbar^{4}}{4 m^{2}} \int_{0}^{a}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}\right)^{2} \mathrm{~d} x+\langle H\rangle^{2} \int_{0}^{a} \Psi(x)^{2} \mathrm{~d} x+\langle H\rangle \frac{\hbar^{2}}{2 m} \int_{0}^{a} \Psi \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x+\langle H\rangle \frac{\hbar^{2}}{2 m} \int_{0}^{a} \Psi \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x \\
& =\frac{\hbar^{4}}{4 m^{2}} \int_{0}^{a}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}\right)^{2} \mathrm{~d} x+\langle H\rangle^{2}+2\langle H\rangle \frac{\hbar^{2}}{2 m} \int_{0}^{a} \Psi \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x
\end{aligned}
$$

using a computer algebra system I find the derivatives of Ψ, and evaluate the integrals

$$
\begin{aligned}
\frac{\partial^{2} \Psi}{\partial x^{2}} & =-\frac{\pi^{2}}{\sqrt{a^{5}}}\left(\exp (3 \omega t)+8 \cos \left(\frac{\pi x}{a}\right)\right) \exp (-4 \omega t) \sin \left(\frac{\pi x}{a}\right) \\
\int_{0}^{a}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}\right)^{2} \mathrm{~d} x & =\frac{\pi^{4}}{a^{5}}\left(\frac{a}{2} \exp (6 \omega t)+8 a\right) \exp (-8 \omega t) \\
\int_{0}^{a} \Psi \frac{\partial^{2} \Psi}{\partial x^{2}} \mathrm{~d} x & =-\frac{\pi^{2}}{a^{3}}\left(\frac{a}{2} \exp (6 \omega t)+2 a\right) \exp (-8 \omega t)
\end{aligned}
$$

plugging back into σ_{H}^{2} and simplifying with a CAS, we get

$$
\sigma_{H}^{2}=\frac{\pi^{4} \hbar^{4}}{16 a^{4} m^{2}}(25 \exp (8 \omega t)-8 \exp (6 \omega t)-8) \exp (-8 \omega t)
$$

Finally, we subsitute σ_{H} and σ_{x} into the energy-time uncertainty principle

$$
\begin{aligned}
\Delta E & =\sigma_{H}=\sqrt{\frac{\pi^{4} \hbar^{4}}{16 a^{4} m^{2}}(25 \exp (8 \omega t)-8 \exp (6 \omega t)-8) \exp (-8 \omega t)} \\
& =\frac{\pi^{2} \hbar^{2}}{4 a^{2} m} \sqrt{(25 \exp (8 \omega t)-8 \exp (6 \omega t)-8) \exp (-8 \omega t)} \\
\Delta t & =\frac{\sigma_{x}}{|\mathrm{~d}\langle x\rangle / \mathrm{d} t|}=a \sqrt{\frac{1}{12}-\frac{5}{16 \pi^{2}}+\left(\frac{16}{9 \pi^{2}} \cos (3 \omega t)\right)^{2}} \frac{3 m a}{8 \hbar} \frac{1}{\sin (3 \omega t)}
\end{aligned}
$$

We want to show that $\Delta E \Delta t \geq \hbar / 2$, but I've run out of time to show this. Hopefully taking that product would simplify to something which can be shown to be at least $\hbar / 2$.

Problem 3.31 Virial theorem. Use Equation 3.71 to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle x p\rangle=2\langle T\rangle-\left\langle x \frac{\mathrm{~d} V}{\mathrm{~d} x}\right\rangle
$$

where T is the kinetic energy $(H=T+V)$. In a stationary state the left side is zero (why?) so

$$
2\langle T\rangle=\left\langle x \frac{\mathrm{~d} V}{\mathrm{~d} x}\right\rangle
$$

This is called the virial theorem. Use it to prove that $\langle T\rangle=\langle V\rangle$ for stationary states of the harmonic oscillator, and check that this is consistent with the results you got in Problems 2.11 and 2.12 .
Equation 3.71 states that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle Q\rangle=\frac{\imath}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle
$$

By inspecting the equation we are seeking to solve, $Q=x p$, and $\hat{Q}=x \hat{p}$. We will begin by expanding $[\hat{H}, x \hat{p}]$. First, recall that

$$
\hat{p}=\frac{\hbar}{\imath} \frac{\partial}{\partial x} \text { and } \hat{H}=\frac{\hat{p}^{2}}{2 m}+V(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

By the definition of the commutator, it follows that

$$
\begin{aligned}
{[\hat{H}, x \hat{p}](f) } & =\hat{H} x \hat{p}(f)-x \hat{p} \hat{H}(f) \\
& =\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right) x\left(\frac{\hbar}{\imath} \frac{\partial}{\partial x}\right)(f)-x\left(\frac{\hbar}{\imath} \frac{\partial}{\partial x}\right)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right)(f) \\
& =\frac{\hbar}{\imath}\left[\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right) x\left(\frac{\partial f}{\partial x}\right)-x\left(\frac{\partial}{\partial x}\right)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} f}{\partial x^{2}}+V(x) f(x)\right)\right] \\
& =\frac{\hbar}{\imath}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\left(x \frac{\partial f}{\partial x}\right)+x V(x) \frac{\partial f}{\partial x}+x \frac{\hbar^{2}}{2 m} \frac{\partial^{3} f}{\partial x^{3}}-x \frac{\partial}{\partial x}(V(x) f(x))\right] \\
& =\frac{\hbar}{\imath}\left[-\frac{\hbar^{2}}{2 m}\left(2 \frac{\partial^{2} f}{\partial x^{2}}+x \frac{\partial^{3} f}{\partial x^{3}}\right)+x V(x) \frac{\partial f}{\partial x}+x \frac{\hbar^{2}}{2 m} \frac{\partial^{3} f}{\partial x^{3}}-x \frac{\partial V}{\partial x} f(x)-x V(x) \frac{\partial f}{\partial x}\right] \\
& =\frac{\hbar}{\imath}\left[-\frac{\hbar^{2}}{m} \frac{\partial^{2} f}{\partial x^{2}}-x \frac{\partial V}{\partial x} f(x)\right]
\end{aligned}
$$

now we remove the test

$$
[\hat{H}, x \hat{p}]=\frac{\hbar}{\imath}\left[-\frac{\hbar^{2}}{m} \frac{\partial^{2}}{\partial x^{2}}-x \frac{\partial V}{\partial x}\right]
$$

and substitute back into Equation 3.71

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle x p\rangle & =\frac{\imath}{\hbar}\left\langle-\frac{\hbar}{\imath}\left(\frac{\hbar^{2}}{m} \frac{\partial^{2}}{\partial x^{2}}+x \frac{\partial V}{\partial x}\right)\right\rangle+\left\langle\frac{\partial(x \hat{p})}{\partial t}\right\rangle \\
& =\left\langle-\frac{\hbar^{2}}{m} \frac{\partial^{2}}{\partial x^{2}}\right\rangle-\left\langle x \frac{\partial V}{\partial x}\right\rangle+\left\langle\frac{\partial(x \hat{p})}{\partial t}\right\rangle \\
& =2\langle T\rangle-\left\langle x \frac{\partial V}{\partial x}\right\rangle+\left\langle\frac{\partial(x \hat{p})}{\partial t}\right\rangle
\end{aligned}
$$

In the typical case, the operator \hat{Q} does not depend on time, and therefore we can neglect the time derivative of $x \hat{p}$, leaving us with the desired result:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle x p\rangle=2\langle T\rangle-\left\langle x \frac{\partial V}{\partial x}\right\rangle
$$

In a stationary state, nothing depends on time, and therefore the time derivative of the expectation value of $x p$ is zero, leaving us with

$$
2\langle T\rangle=\left\langle x \frac{\partial V}{\partial x}\right\rangle
$$

The harmonic oscillator has potential $V(x)=m \omega^{2} x^{2} / 2$, and so $\frac{\mathrm{d} V}{\mathrm{~d} x}=m \omega^{2} x$, meaning $\left\langle x \frac{\mathrm{~d} V}{\mathrm{~d} x}\right\rangle=\left\langle m \omega^{2} x^{2}\right\rangle=$ $\langle 2 V\rangle$, therefore $2\langle T\rangle=2\langle V\rangle$, or simply $\langle T\rangle=\langle V\rangle$.
Problem 3.38 The Hamiltonian for a certain three-level system is represented by the matrix

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Two other observables, A and B, are represented by the matrices

$$
\mathbf{A}=\lambda\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right), \mathbf{B}=\mu\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

where ω, λ, and μ are positive real numbers.
a. Find the eigenvalues and (normalized) eigenvectors of \mathbf{H}, \mathbf{A}, and \mathbf{B}.
(Note that all eigenvalues and eigenvectors were found with the assistance of numpy.linalg.eig)
\mathbf{H} has eigenvalues $E_{1}=\hbar \omega, E_{2}=E_{3}=2 \hbar \omega$, and eigenvectors $\left|H_{1}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left|H_{2}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\left|H_{3}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
A has eigenvalues $a_{1}=\lambda, a_{2}=-\lambda, a_{3}=2 \lambda$, and eigenvectors $\left|A_{1}\right\rangle=(1 / \sqrt{2})\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left|A_{2}\right\rangle=(1 / \sqrt{2})\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$, $\left|A_{3}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
\mathbf{B} has eigenvalues $b_{1}=\mu, b_{2}=-\mu, b_{3}=2 \mu$, and eigenvectors $\left|B_{1}\right\rangle=(1 / \sqrt{2})\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left|B_{2}\right\rangle=(1 / \sqrt{2})\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$, $\left|B_{3}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
b. Suppose the system starts out in the generic state

$$
|\mathcal{S}(0)\rangle=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

with $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}=1$. Find the expectation values (at $t=0$) of H, A, and B.

$$
\begin{aligned}
\langle H\rangle & =\langle\mathcal{S}(0)| H|\mathcal{S}(0)\rangle=\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right) \hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\hbar \omega\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right)\left(\begin{array}{c}
c_{1} \\
2 c_{2} \\
2 c_{3}
\end{array}\right)=\hbar \omega\left(\left|c_{1}\right|^{2}+2\left(\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}\right)\right) \\
\text { recall: } 1 & =\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2} \Longrightarrow 1-\left|c_{1}\right|^{2}=\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2} \\
\langle H\rangle & =\hbar \omega\left(\left|c_{1}\right|^{2}+2\left(1-\left|c_{1}\right|^{2}\right)\right)=\hbar \omega\left(2-\left|c_{1}\right|^{2}\right), \\
\langle A\rangle & =\langle\mathcal{S}(0)| A|\mathcal{S}(0)\rangle=\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right) \lambda\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\lambda\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right)\left(\begin{array}{c}
c_{2} \\
c_{1} \\
2 c_{3}
\end{array}\right)=\lambda\left(c_{1}^{*} c_{2}+c_{2}^{*} c_{1}+2\left|c_{3}\right|^{2}\right), \\
\langle B\rangle & =\langle\mathcal{S}(0)| B|\mathcal{S}(0)\rangle=\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right) \mu\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\mu\left(c_{1}^{*} c_{2}^{*} c_{3}^{*}\right)\left(\begin{array}{c}
2 c_{1} \\
c_{3} \\
c_{2}
\end{array}\right)=\mu\left(2\left|c_{1}\right|^{2}+c_{2}^{*} c_{3}+c_{3}^{*} c_{2}\right) .
\end{aligned}
$$

c. What is $|\mathcal{S}(t)\rangle$? If you measured the energy of this state (at time t), what values might you get, and what is the probability of each? Answer the same questions for A and for B.

We obtain $|\mathcal{S}(t)\rangle$ by writing $|\mathcal{S}(0)\rangle$ as a linear combination of time-independent eigenstates, and then tacking on the time dependence, $\exp \left(-\imath E_{n} t / \hbar\right)$.

One can intuitively write $|\mathcal{S}(0)\rangle$ as a linear combination of H 's eigenvectors, given by

$$
|\mathcal{S}(0)\rangle=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
c_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
c_{3}
\end{array}\right)=c_{1}\left|H_{1}\right\rangle+c_{2}\left|H_{2}\right\rangle+c_{3}\left|H_{3}\right\rangle .
$$

Then by tacking on the time-dependence we obtain $|\mathcal{S}(t)\rangle$

$$
|\mathcal{S}(t)\rangle=c_{1}\left|H_{1}\right\rangle \exp \left(-\imath E_{1} t / \hbar\right)+c_{2}\left|H_{2}\right\rangle \exp \left(-\imath E_{2} t / \hbar\right)+c_{3}\left|H_{3}\right\rangle \exp \left(-\imath E_{3} t / \hbar\right)
$$

If you were to measure the energy of the state, there is a probability $\left|c_{1}\right|^{2}$ that you would observe $E_{1}=\hbar \omega$, and a probability $\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}$ that you would observe $E_{2}=E_{3}=2 \hbar \omega$.

