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Problem 3.16 Solve (p — (p))¥ =1a(x — (x))¥ for U(x). Note that (z), (p), and a are real constants.

p¥ = [wa(z — (z)) + (p)] ¥

d ?

S =2 fuale— () + {p)] @
dv [ a 1{p)

U(z) = exp(C) exp (_;i(x _ <I>)2> eXp(Z <I;1> x)

— Aexp(—;h(x _ <x>)2> exp<l <]2> x)

Problem 3.18 Test the energy-time uncertainty principle for the wave function in Problem 2.5 and the
observable z, by calculating o, 0., and d(z) / dt exactly.

The wave function in Problem 2.5 is given by

V2

¥z, 1) = L (a1 (1) + dalw)palt], where vy () = 12 sin( "2 ), and (1) = exp(~n)

or more simply

U(z,t) = % [sin(?) exp(—wt) + sin(2zm> exp(—4wt)] ,

and solving for the probability density function we get

1 2 2
plx) = |\Il(a:,t)’2 =- [sin2 (m) + sin? (771:) + 251n<m> sin(m) cos(3wt)] .
a a a a a
Note that all of the above was done in the 2nd homework assignment. For more detailed steps please refer to
that.
Since o is given by 1/(Q2) — (Q)? for any operator @, we will first have to find some expectation values.

(x) was shown in the 2nd assignment to be

a 16a
(x) = 3 92 cos(3wt),

and d(z) / dt was shown to be

Now we will find (%)
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(integration done with SymPy and Wolfram|Alpha)

1 a®  a? a® a’ 8a’
=1 lﬁ - M] * la " oz | T 2eos(3eh) l

912
3 1 1 1 1
= — { -tz 2cos(3wt)8} =a? { _ 0 QCOS(3wt)8:|

a |6 472 6 1672 9m2 3 1672 972
(note that lem(3, 1672, 972) = 1447?)

2 (12

2y a 2 — . — 3 . — 2 — — S
(2%) = 5 |487% =59 — 2c0s(30)16 - 8] = —=— [487% — 45 — 256 cos(3wt)|
a 2
- (m> [487r2 45— 256 cos(Swt)}

1

2
16 1 16 16
2 _ .2 2 _ 2
or=(z")— (x)"=a {Mll 142 9n2 cos(3wt) — 1 + 92 cos(3wt) + (971_2 cos(3wt)> }
1 5 16 ?
R bl
=aqa [12 = + (9772 Cos(3wt)) 1

(H) was also found in the previous assignment, and has value

B 5m2h?
T 4dma?’

(H)

Now, instead of finding <H2>, we can invoke Equation 3.21 to skip directly to oy.
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note that W is real-valued, and therefore the complex conjugate is the identity function
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using a computer algebra system I find the derivatives of ¥, and evaluate the integrals

0% 2 T [Tz
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a 2 2 4
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a 2\ 2
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plugging back into 0% and simplifying with a CAS, we get
9 m4ht
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Finally, we subsitute o and o, into the energy-time uncertainty principle

miht
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We want to show that AEAt > k/2, but I've run out of time to show this. Hopefully taking that product
would simplify to something which can be shown to be at least %/2.

Problem 3.31 Virial theorem. Use Equation 3.71 to show that
d dVv

— =2(T) — —_—

a (o) =2 <x dz >

where T is the kinetic energy (H =T + V). In a stationary state the left side is zero (why?) so

2(1) - (1L,




This is called the virial theorem. Use it to prove that (T) = (V) for stationary states of the harmonic
oscillator, and check that this is consistent with the results you got in Problems 2.11 and 2.12.

Equation 3.71 states that
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By inspecting the equation we are seeking to solve, Q = xp, and Q = zp. We will begin by expanding [ﬁ , P
First, recall that

By the definition of the commutator, it follows that
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In the typical case, the operator Q does not depend on time, and therefore we can neglect the time derivative
of xp, leaving us with the desired result:

& o =217 (20,

In a stationary state, nothing depends on time, and therefore the time derivative of the expectation value of

1= (+2L),

[vam =

xp is zero, leaving us with



The harmonic oscillator has potential V (x) = mw?2?/2, and so % = mw?z, meaning < dv> = <mw2x2> =
(2V), therefore 2 (T') = 2 (V'), or simply (T') = (V).

Problem 3.38 The Hamiltonian for a certain three-level system is represented by the matrix

Two other observables, A and B, are represented by the matrices

01 0 2.0 0
A=Xx[1 0 o],B=ul0 0 1],
00 2 010

where w, A, and p are positive real numbers.
a. Find the eigenvalues and (normalized) eigenvectors of H, A, and B.
(Note that all eigenvalues and eigenvectors were found with the assistance of numpy.linalg.eig)
H has eigenvalues E; = fw, E2 = E5 = 2fw, and eigenvectors |H;) = (é), |Hs) = <0) and |H3) = (§>
A has eigenvalues a; = \, ax = —\, az = 2, and eigenvectors |A;) = (l/ﬁ)(é) |Ag) = (1/\f)<_(1)1>,
0
431 = (1)
B has eigenvalues by = p, by = —pu, bg = 2u, and eigenvectors |By) = (1/\/5)((9, |Bg) = (1/\/§)<
1
2= (4)
b. Suppose the system starts out in the generic state
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—

0
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with |e1]® + |ea|® + |es|* = 1. Find the expectation values (at ¢ = 0) of H, A, and B.
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c. What is |S(¢))? If you measured the energy of this state (at time t), what values might you get, and
what is the probability of each? Answer the same questions for A and for B.

We obtain |S(t)) by writing |S(0)) as a linear combination of time-independent eigenstates, and then tacking
on the time dependence, exp(—zEnt/h).

One can intuitively write |S(0)) as a linear combination of H’s eigenvectors, given by

SO)=(2)=(9)+(&)+(8) = lm) + e M) + s Hs).

€3 0 3
Then by tacking on the time-dependence we obtain |S(t))
|S(t)) = ¢1 |Hy) exp(—1E1t/h) + co |Ha) exp(—1Eat/h) + c3 |Hs) exp(—iEst/h).

If you were to measure the energy of the state, there is a probability |cl|2 that you would observe Fy = hw,
and a probability |cz|* 4 |es|® that you would observe Ey = E3 = 2hw.



