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Problem 4.1

a. Work out all of the canonical commutation relations for components of the operators r and p.

rri, rjs “ rirj ´ rjri “ rirj ´ rirj “ 0

rpi, pjs “ pipj ´ pjpi “ ´~2

«

d
dri

d
drj

´
d

drj
d

dri

ff

“ ´~2

«

d
dri

d
drj

´
d

dri
d

drj

ff

“ 0

rri, pjs f “ ripjpfq ´ pjripfq “ ri
~
ı

d
drj

f ´
~
ı

d
drj

pri ¨ fq

“
~
ı

«

ri
df
drj

´
dri
drj

f ´ ri
df
drj

ff

“
~
ı

«

´
dri
drj

f

ff

ùñ rri, pjs “ ı~

#

1, if i “ j,
0, if i ‰ j.

“ ı~δij

b. Confirm Ehrenfest’s theorem for 3-dimensions

Ehrenfest’s theorem is simply a special case of Equation 3.71, so we make use of that with Q “ ri and
BQ{Bt “ 0.

d
dt xriy “

ı

~
xrH, ris y .

First we find rH, ris :

rH, ris “

˜

p2

2m ` V

¸

ri ´ ri

˜

p2

2m ` V

¸

“
p2

2mri ´ ri
p2

2m “
1

2m rp
2, ris ,

since we know that rri, pjs “ ı~δij , the components of p aside from pi disappear and we’re left with

rH, ris f “
1

2m rp
2
i , ris f “ ´

~2

2m

˜

d2

dr2
i

prifq ´ ri
d2

dr2
i

f

¸

“ ´
~2

2m

¨

˝

d
dri

˜

dri
dri

f ` ri
df
dri

¸

´ ri
d2f

dr2
i

˛

‚

“ ´
~2

2m

¨

˝

d
dri

˜

f ` ri
df
dri

¸

´ ri
d2f

dr2
i

˛

‚“ ´
~2

2m

˜

df
dri

`
dri
dri

df
dri

` ri
d2f

dr2
i

´ ri
d2f

dr2
i

¸

“ ´
~2

2m

˜

df
dri

`
df
dri

¸

“ ´
~2

m

df
dri

ùñ rH, ris “ ´
~2

m

d
dri

“ ´
ı~
m
pi
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Now we substitute this into Equation 3.71 to get

d
dt xriy “

ı

~

B

´
ı~
m
pi

F

“
1
m
xpiy ùñ

d
dt xry “

1
m
xpy .

Now repeat the same process, this time with Q “ pi.

d
dt xpiy “

ı

~
xrH, pis y .

rH, pis “

˜

p2

2m ` V

¸

pi ´ pi

˜

p2

2m ` V

¸

“
p3
i

2m ` V pi ´
p3
i

2m ` piV “ V pi ´ piV “ rV, pis

By Equation 3.65, we know that rfpxq, ps “ ı~
df
dx , which can be extended to rfpxq,ps “ ı~∇f . So we have

rH, pis “ rV, pis “ ı~∇V . Substituting into Equation 3.71 gives us

d
dt xpy “

ı

~
xı~∇V y “ x´∇V y .

c. Formulate Heisenberg’s uncertainty principle in three dimensions.

Using the generalized uncertainty principle

σ2
Aσ

2
B ě

ˆ

1
2ı xrA,Bsy

˙2

substituting the commutation relations for ri and pj above, it is clear that

σ2
ri
σ2
pj
ě

~2

4 δij , or σri
σpj

ě
~
2 δij

Problem 4.2 Use separation of variables in cartesian coordinates to solve the infinite cubical well (or “particle
in a box”):

V px, y, zq “

#

0, if x, y, z are all between 0 and a;
8 otherwise.

a. Find the stationary states, and the corresponding energies.

The time-independent Schrödinger equation in 3D states that

Eψprq “

«

´
~2

2m∇2 ` V prq

ff

ψprq,

where r “ r x y z s, and ∇2 “ B
2

Bx2`
B

2

By2`
B

2

Bz2 . Now let ψprq “ XpxqY pyqZpzq. ∇2ψ “ X2Y Z`XY 2Z`XY Z2.

Inside the box, V “ 0, so the Schrödinger equation simplifies to

EXY Z “ ´
~2

2mX2Y Z `XY 2Z `XY Z2,

and dividing by XY Z and ´~2{2m we get

´
2mE
~2 “

X2

X
`
Y 2

Y
`
Z2

Z
.
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Each term in the summation on the right is a function of a different variable, yet they sum to a constant.
This can only be the case if each term is in fact constant itself. We shall call these constants ´λ2

x, ´λ2
y, and

´λ2
z. We make these negative in order to make the energy positive, and we square them for reasons that will

soon be made clear. Substituting and solving for E gives:

E “
~2

2m

´

λ2
x ` λ

2
y ` λ

2
z

¯

,

and separating the three variables into a system of equations gives:

X2 ` λ2
xX “ 0; Y 2 ` λ2

yY “ 0; Z2 ` λ2
zZ “ 0.

Now we will solve the ODE for Xpxq, and in doing so will solve the ODE’s for Y pyq and Zpzq (just change
the variable and constant names). The ODE for Xpxq is a familiar ODE, with solution

Xpxq “ Ax sinpλxxq `Bx cospλxxq.

Note that we now have λx instead of λ2
x, but we could have, with equal validity, originally chosen constants

µx, which would leave us now with sin
`?
µxx

˘

.

Now consider the boundary conditions. As we know the potential is infinite outside the box, X must go to
zero at the boundaries. So first we take the boundary condition Xp0q “ 0:

Xp0q “ Ax sinp0q `Bx cosp0q “ Bx “ 0.

This removes the Bx term from the equation, and we can now take the second boundary condition, Xpaq “ 0:

Xpaq “ Ax sinpλxaq “ 0.

This can imply either of two cases:

1. Ax “ 0, in which case X ” 0, and therefore ψ ” 0, which is non-normalizable, so we disregard it.
2. sinpλxaq “ 0, in which case λx “ nxπ{a for any non-zero integer nx. Negative values of n are redundant,

and so we impose the constraint nx P Z`.

Now we can rewrite X as
Xnpxq “ Ax sin

ˆ

nxπx

a

˙

,

and normalize over r0, as
ż a

0
X˚nXn dx “ |Ax|2

ż a

0
sin2

ˆ

nxπx

a

˙

dx “ |Ax|2 a2 “ 1 ùñ Ax “
a

2{a.

Note that Ax is independent of x and nx, and so Ax “ Ay “ Az.

So we have now shown that

Xnpxq “
a

2{a sin
ˆ

nxπx

a

˙

; Ynpyq “
a

2{a sin
ˆ

nyπy

a

˙

; Znpzq “
a

2{a sin
ˆ

nzπz

a

˙

,

ψnprq “ AxAyAz sin
ˆ

nxπx

a

˙

sin
ˆ

nyπy

a

˙

sin
ˆ

nzπz

a

˙

“ p2{aq3{2 sin
ˆ

nxπx

a

˙

sin
ˆ

nyπy

a

˙

sin
ˆ

nzπz

a

˙

,

En “
π2~2

2ma2

´

n2
x ` n

2
y ` n

2
z

¯

.

b. Call the distinct energies E1, E2, E3, . . . , in order of increasing energy. Find E1 through E6. Determine
their degeneracies (that is, the number of different states that share the same energy).

As there will be many states with the same energy, and computing by hand will be tedious, I make use of the
following python script to output LATEX source for the following table.
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#!/usr/bin/python

from collections import defaultdict
from itertools import islice, product

def energy_states(highest_state):
# a mapping of
# E -> [(n_x, n_y, n_z), ...]
states = defaultdict(list)

for x, y, z in product(range(1, highest_state+1), repeat=3):
E = x**2+y**2+z**2
states[E].append([x, y, z])

return states

def display(states, n_low, n_high):
print(r"\begin{tabular}{ccc||r}")
print(r"$n_x$ & $n_y$ & $n_z$ & $(n_x^2 + n_y^2 + n_z^2)$ \\\hline")

# display the energy states from n_low to n_high
for E in islice(sorted(states), n_low, n_high):

print(r"\hline")
for x, y, z in states[E]:

print(r"{} & {} & {} & {}".format(x, y, z, E))
print(r"\\")

print(r"\end{tabular}")

if __name__ == "__main__":
states = energy_states(5)

print("Part b")
display(states, 0, 6)

print("Part c")
# start from 13 since it is indexed by 0
# stop at 14 because the end of islice is exclusive
display(states, 13, 14)
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nx ny nz pn2
x ` n

2
y ` n

2
zq

1 1 1 3
1 1 2 6
1 2 1 6
2 1 1 6
1 2 2 9
2 1 2 9
2 2 1 9
1 1 3 11
1 3 1 11
3 1 1 11
2 2 2 12
1 2 3 14
1 3 2 14
2 1 3 14
2 3 1 14
3 1 2 14
3 2 1 14

E1 “
3π2~2

2ma2 ; degeneracy is 1

E2 “
6π2~2

2ma2 ; degeneracy is 3

E3 “
9π2~2

2ma2 ; degeneracy is 3

E4 “
11π2~2

2ma2 ; degeneracy is 3

E5 “
12π2~2

2ma2 ; degeneracy is 1

E6 “
14π2~2

2ma2 ; degeneracy is 6

c. What is the degeneracy of E14 and why is this case interesting?

The following table displays the combinations of n which form E14. There are 4 combinations, so the
degeneracy is 4.

nx ny nz pn2
x ` n

2
y ` n

2
zq

1 1 5 27
1 5 1 27
3 3 3 27
5 1 1 27

Problem 4.16 A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons (Z “ 1
would be hydrogen itself, Z “ 2 is ionized helium, Z “ 3 is doubly ionized lithium, and so on). Determine
the Bohr energies EnpZq, the binding energy E1pZq, the Bohr radius apZq, and the Rydberg constant RpZq
for a hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen values.) Where in the
electromagnetic spectrum would the Lyman series fall, for Z “ 2 and Z “ 3?

The Coloumb potential is given by
V prq “

1
4πε0

Qq

r
,
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and for a hydrogenic atom with Z protons, Q “ Ze and q “ ´e, so

V prq “ ´
1

4πε0

Ze2

r
.

We now substitute V prq into the radial wave equation, giving us

´
~2

2m
d2u

dr2 `

«

´Z
e2

4πε0

1
r
`

~2

2m
`p`` 1q
r2

ff

u “ Eu

Now we define
κ “

?
´2mE
~

,

and divide through by E, giving

1
κ2

d2u

dr2 “

«

1´ Z me2

2πε0~2κ

1
κr
`
`p`` 1q
pκrq2

ff

u.

Now we define
ρ ” κr, and ρ0 ”

me2

2πε0~2κ
,

giving us
d2u

dρ2 “

„

1´ Zρ0

ρ
`
`p`` 1q
ρ2



u.

Here is where the trick comes in. Let us define

ρ̃0 ” Zρ0.

Now the wave equation is given by

d2u

dρ2 “

„

1´ ρ̃0

ρ
`
`p`` 1q
ρ2



u.

If we treat ρ̃0 as we treated ρ0 when dealing with the hydrogen atom, we wind up with the same results, up
until the very end, where

ρ̃0 “ 2n.

Unravelling our definition of ρ̃0 gives us

ρ̃0 “ Z
me2

2πε0~2κ
“ Z

me2

2πε0~
?
´2mE

.

Now we solve for EnpZq

2n “ Z
me2

2πε0~
?
´2mE

ùñ
?
´2mE “ Z

me2

4πε0~n
ùñ EnpZq “ ´

m

2~2

«

Z
e2

4πε0

ff2
1
n2 .

Now Equation 4.70 gives En for hydrogen, which I will denote EH,n, as

EH,n “ ´
m

2~2

˜

e2

4πε0

¸2
1
n2 ,

and so En for a hydrogenic atom is simply

EnpZq “ Z2EH,n.
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The binding energy is therefore E1pZq

E1pZq “ Z2EH,1 “ ´Z
2 m

2~2

˜

e2

4πε0

¸2

“ ´Z213.6 eV.

To find the Bohr radius, we note that

κ “ Z

˜

me2

4πε0~2

¸

1
n
“ Z

1
aHn

“
1

apZqn
,

where aH is the Bohr radius of hydrogen. It follows that apZq “ aH{Z, and so

apZq “
1
Z

4πε0~2

me2 “
0.529ˆ 10´10 m

Z

Now, to find the Rydberg constant, RpZq, we first look at the energy difference Eγ

EγpZq “ EipZq ´ Ef pZq “ ´Z
2 13.6 eV

˜

1
n2
i

´
1
n2
f

¸

,

and then translate that into 1{λ via E “ hc{λ, giving

1
λ
“
EγpZq

hc
“ ´Z213.6 eV

˜

1
n2
i

´
1
n2
f

¸

“ Z2RH

˜

1
n2
f

´
1
n2
i

¸

“ RpZq

˜

1
n2
f

´
1
n2
i

¸

,

so RpZq “ Z2RH “ Z21.097ˆ 107 m´1.

Since RpZq “ Z2RH , it follows that λpZq´1 “ Z2λ´1
H , or λpZq “ λH{Z

2.

I have taken the liberty of looking up the wavelengths for the Lyman series, and so for Z “ 2, I simply divide
those by 4, and for Z “ 3, I divide by 9. The following table summarizes the results

Z 1 2 3
λ (n “ 2) 121.6nm 30.40nm 13.51nm
λ (n “ 8) 91.18nm 22.80nm 10.13nm
class far / extreme extreme extreme

UV UV UV

(Lyman series wavelengths taken from https://en.wikipedia.org/wiki/Lyman_series; EM Spectrum classes
taken from http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf)

Problem 4.17 Consider the earth–sun system as a gravitational analog of the hydrogen atom.

a. What is the potential energy function (replacing Equation 4.52)? (Let m be the mass of the earth, and
M the mass of the sun.)

Gravitational potential energy is given by

V prq “ ´G
Mm

r

b. What is the “Bohr radius,” ag, for this system? Work out the actual number.
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To find the Bohr radius, we first note that the given potential V prq is very similar to that of the hydrogen
atom. We merely have to replace Coulomb’s constant with G, and Qq with Mm. The radial wave equation
is given by

´
~2

2m
d2u

dr2 `

«

´G
Mm

r
`

~2

2m
`p`` 1q
r2

ff

u “ Eu

Once again, we define κ “
?
´2mE{~, and divide through by E “ ´pκ~q2{2m

1
κ2

d2u

dr2 “

«

1´ 2GMm2

~2κ

1
κr
`
`p`` 1q
pκrq2

ff

u.

Now here’s the trick, we define ρ and ρ0 as follows

ρ ” κr, and ρ0 ” 2GMm2

~2κ
,

which puts us back where we were for the hydrogen atom,

d2u

dρ2 “

„

1´ ρ0

ρ
`
`p`` 1q
ρ2



u,

except that once we unravel our definition of ρ0, we will have different constants. From the text, we know
that

ρ0 “ 2n “ 2GMm2

~2κ
“ 2G Mm2

~
?
´2mE

ùñ n “ G
Mm2

~
?
´2mE

ùñ
?
´2mE “ G

Mm2

~n
ùñ En “ ´

m

2~2 pGMmq
2 1
n2

So the Bohr energy is
En “ ´

m

2~2 pGMmq
2 1
n2

To find the Bohr radius, we return to ρ0 and solve for κ

ρ0 “ 2n “ 2GMm2

~2κ
ùñ κ “

GMm2

~2
1
n

Now since κ “ 1{panq, that means that

1
agn

“
GMm2

~2
1
n
ùñ ag “

~2

GMm2 ,

and substituting M “ M@ “ 1.9891ˆ 1030 kg, m “ MC “ 5.9736ˆ 1024 kg, G “ 6.67ˆ 10´11 Nm2kg´2,
and ~ “ 1.054 571 5ˆ 10´34 J s (constants taken from An Introduction to Modern Astrophysics, 2nd Edition
by Carroll and Ostlie), we find

ag “

`

1.054 571 5ˆ 10´34 J s
˘2

`

6.67ˆ 10´11 Nm2kg´2˘`1.9891ˆ 1030 kg
˘`

5.9736ˆ 1024 kg
˘2

“ 2.349ˆ 10´138 J2s2 N´1m´2kg2kg´1kg´2 “ 2.349ˆ 10´138 J2s2 N´1m´2 kg´1

“ 2.349ˆ 10´138 Js2m´1kg´1 “ 2.349ˆ 10´138 kgm2s´2s2m´1kg´1

“ 2.349ˆ 10´138 m (tiny!)

c. Write down the gravitational “Bohr formula,” and, by equating En to the classical energy of a planet
in a circular orbit of radius r0, show that n “

a

r0{ag. From this, estimate the quantum number n of
the earth.
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As was noted previously,
En “ ´

m

2~2 pGMmq
2 1
n2 .

Classically, total energy is given by E “ V ` T , where V is potential energy (we’ve already found this), and
T is kinetic energy. Kinetic energy is given by mv2{2, but we do not know v. To get around this, we take
advantage of the fact that this is a circular orbit, and therefore has constant radius and velocity, making it
centripetal motion. The net force on the Earth is simply the gravitational force exerted by the Sun, so we
equate the gravitational force with the centripetal force

m
v2

r0
“ G

Mm

r2
0

ùñ mv2 “ G
Mm

r0
ùñ

1
2mv

2 “ G
Mm

2r0
“ T.

Now we substitute En, V and T into the total energy equation

´
m

2~2 pGMmq
2 1
n2 “ ´G

Mm

r0
`G

Mm

2r0
“ ´G

Mm

2r0
.

Solving for n we get

1
n2 “ G

Mm

2r0

2~2

m

1
pGMmq2

“
1
r0

~2

GMm2 “
ag
r0

ùñ n “

c

r0

ag

We equate r0 to the semi-major axis of the Earth’s orbit, which is 1 AU or r0 “ 1.495 978 706 6ˆ 1011 m
(from Carroll and Ostlie). Substituting this, along with ag from earlier, gives

n “

d

1.495 978 706 6ˆ 1011 m
2.349ˆ 10´138 m

“ 2.5236ˆ 1074

d. Suppose the earth made a transition to the next lower level (n ´ 1). How much energy (in Joules)
would be released? What would the wavelength of the emitted photon (or, more likely, graviton) be?
(Express your answer in light years – is the remarkable answer a coincidence?)

The energy of the emitted photon would be

Eγ “ En ´ En´1 “ ´
m

2~2 pGMmq
2
ˆ

1
n2 ´

1
pn´ 1q2

˙

.

Now, if we were to simply plug in the n from above, and enter it into a calculator, we would get 0 because n
is so large that n and n´ 1 would be identical. We therefore need to find an approximation which contains
only a single n term.

1
n2 ´

1
pn´ 1q2 “

pn´ 1q2 ´ n2

n2pn´ 1q2 “
n2 ´ 2n` 1´ n2

n2pn´ 1q2 “
´2n` 1
n2pn´ 1q2

Here, we make the approximation n´ 1 « n, and ´2n` 1 « ´2n, for large n. So

1
n2 ´

1
pn´ 1q2 «

´2n
n2 ¨ n2 “

´2
n3 ,

which we then substitute back into Eγ

Eγ « ´
m

2~2 pGMmq
2´2
n3 “

m

2~2 pGMmq
2 2
n3 ,

now we plug in the constants
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Eγ “
5.9736ˆ 1024 kg

2
`

¨1.054 571 5ˆ 10´34 J s
˘2

2
`

6.67ˆ 10´11 Nm2kg´2 ¨ 1.9891ˆ 1030 kg ¨ 5.9736ˆ 1024 kg
˘2

`

2.5236ˆ 1074˘3

“ 2.0993ˆ 10´41 kgN2m4J´2s´2 “ 2.0993ˆ 10´41 kgN2m4N´2m´2s´2 “ 2.0993ˆ 10´41 kgm2 s´2

“ 2.0993ˆ 10´41 J

Now we find wavelength by means of E “ hc{λ, using h “ 6.626 068ˆ 10´34 J s and c “ 2.997 924 58ˆ 108 ms´1

(taken from Carroll and Ostlie),

λ “
hc

Eγ
“

6.626 068ˆ 10´34 J s ¨ 2.997 924 58ˆ 108 ms´1

2.0993ˆ 10´41 J
“ 9.4623ˆ 1015 m.

According to Carroll and Ostlie, 1 ly “ 9.460 730 472ˆ 1015 m, which is approximately λ, so the wavelength
of the emitted graviton is 1 ly.
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