Griffiths Chapter 4 (1)

Dan Wysocki

March 12, 2015

Problem 4.1

a. Work out all of the canonical commutation relations for components of the operators \mathbf{r} and \mathbf{p}.

$$
\begin{aligned}
{\left[r_{i}, r_{j}\right] } & =r_{i} r_{j}-r_{j} r_{i}=r_{i} r_{j}-r_{i} r_{j}=0 \\
{\left[p_{i}, p_{j}\right] } & =p_{i} p_{j}-p_{j} p_{i}=-\hbar^{2}\left[\frac{\mathrm{~d}}{\mathrm{~d} r_{i}} \frac{\mathrm{~d}}{\mathrm{~d} r_{j}}-\frac{\mathrm{d}}{\mathrm{~d} r_{j}} \frac{\mathrm{~d}}{\mathrm{~d} r_{i}}\right] \\
& =-\hbar^{2}\left[\frac{\mathrm{~d}}{\mathrm{~d} r_{i}} \frac{\mathrm{~d}}{\mathrm{~d} r_{j}}-\frac{\mathrm{d}}{\mathrm{~d} r_{i}} \frac{\mathrm{~d}}{\mathrm{~d} r_{j}}\right]=0 \\
{\left[r_{i}, p_{j}\right] f } & =r_{i} p_{j}(f)-p_{j} r_{i}(f)=r_{i} \frac{\hbar}{\imath} \frac{\mathrm{~d}}{\mathrm{~d} r_{j}} f-\frac{\hbar}{\imath} \frac{\mathrm{d}}{\mathrm{~d} r_{j}}\left(r_{i} \cdot f\right) \\
& =\frac{\hbar}{\imath}\left[r_{i} \frac{\mathrm{~d} f}{\mathrm{~d} r_{j}}-\frac{\mathrm{d} r_{i}}{\mathrm{~d} r_{j}} f-r_{i} \frac{\mathrm{~d} f}{\mathrm{~d} r_{j}}\right]=\frac{\hbar}{\imath}\left[-\frac{\mathrm{d} r_{i}}{\mathrm{~d} r_{j}} f\right] \\
\Longrightarrow\left[r_{i}, p_{j}\right] & =\imath \hbar\left\{\begin{array}{ll}
1, & \text { if } i=j, \\
0, & \text { if } i \neq j .
\end{array}=\imath \hbar \delta_{i j}\right.
\end{aligned}
$$

b. Confirm Ehrenfest's theorem for 3-dimensions

Ehrenfest's theorem is simply a special case of Equation 3.71, so we make use of that with $Q=r_{i}$ and $\partial Q / \partial t=0$.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle r_{i}\right\rangle=\frac{\imath}{\hbar}\left\langle\left[H, r_{i}\right]\right\rangle .
$$

First we find $\left[H, r_{i}\right]$:

$$
\left[H, r_{i}\right]=\left(\frac{p^{2}}{2 m}+V\right) r_{i}-r_{i}\left(\frac{p^{2}}{2 m}+V\right)=\frac{p^{2}}{2 m} r_{i}-r_{i} \frac{p^{2}}{2 m}=\frac{1}{2 m}\left[p^{2}, r_{i}\right]
$$

since we know that $\left[r_{i}, p_{j}\right]=\imath \hbar \delta_{i j}$, the components of p aside from p_{i} disappear and we're left with

$$
\begin{aligned}
{\left[H, r_{i}\right] f } & =\frac{1}{2 m}\left[p_{i}^{2}, r_{i}\right] f=-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} r_{i}^{2}}\left(r_{i} f\right)-r_{i} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r_{i}^{2}} f\right)=-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d}}{\mathrm{~d} r_{i}}\left(\frac{\mathrm{~d} r_{i}}{\mathrm{~d} r_{i}} f+r_{i} \frac{\mathrm{~d} f}{\mathrm{~d} r_{i}}\right)-r_{i} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} r_{i}^{2}}\right) \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d}}{\mathrm{~d} r_{i}}\left(f+r_{i} \frac{\mathrm{~d} f}{\mathrm{~d} r_{i}}\right)-r_{i} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} r_{i}^{2}}\right)=-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d} f}{\mathrm{~d} r_{i}}+\frac{\mathrm{d} r_{i}}{\mathrm{~d} r_{i}} \frac{\mathrm{~d} f}{\mathrm{~d} r_{i}}+r_{i} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} r_{i}^{2}}-r_{i} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} r_{i}^{2}}\right) \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d} f}{\mathrm{~d} r_{i}}+\frac{\mathrm{d} f}{\mathrm{~d} r_{i}}\right)=-\frac{\hbar^{2}}{m} \frac{\mathrm{~d} f}{\mathrm{~d} r_{i}} \Longrightarrow\left[H, r_{i}\right]=-\frac{\hbar^{2}}{m} \frac{\mathrm{~d}}{\mathrm{~d} r_{i}}=-\frac{\imath \hbar}{m} p_{i}
\end{aligned}
$$

Now we substitute this into Equation 3.71 to get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle r_{i}\right\rangle=\frac{\imath}{\hbar}\left\langle-\frac{\imath \hbar}{m} p_{i}\right\rangle=\frac{1}{m}\left\langle p_{i}\right\rangle \Longrightarrow \frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathbf{r}\rangle=\frac{1}{m}\langle\mathbf{p}\rangle .
$$

Now repeat the same process, this time with $Q=p_{i}$.

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle p_{i}\right\rangle=\frac{\imath}{\hbar}\left\langle\left[H, p_{i}\right]\right\rangle . \\
{\left[H, p_{i}\right]=\left(\frac{p^{2}}{2 m}+V\right) p_{i}-p_{i}\left(\frac{p^{2}}{2 m}+V\right)=\frac{p_{i}^{3}}{2 m}+V p_{i}-\frac{p_{i}^{3}}{2 m}+p_{i} V=V p_{i}-p_{i} V=\left[V, p_{i}\right]}
\end{gathered}
$$

By Equation 3.65, we know that $[f(x), p]=\imath \hbar \frac{\mathrm{d} f}{\mathrm{~d} x}$, which can be extended to $[f(x), \mathbf{p}]=\imath \hbar \boldsymbol{\nabla} f$. So we have $\left[H, p_{i}\right]=\left[V, p_{i}\right]=\imath \hbar \nabla V$. Substituting into Equation 3.71 gives us

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathbf{p}\rangle=\frac{\imath}{\hbar}\langle\imath \hbar \boldsymbol{\nabla} V\rangle=\langle-\boldsymbol{\nabla} V\rangle .
$$

c. Formulate Heisenberg's uncertainty principle in three dimensions.

Using the generalized uncertainty principle

$$
\sigma_{A}^{2} \sigma_{B}^{2} \geqslant\left(\frac{1}{2 \imath}\langle[A, B]\rangle\right)^{2}
$$

substituting the commutation relations for r_{i} and p_{j} above, it is clear that

$$
\sigma_{r_{i}}^{2} \sigma_{p_{j}}^{2} \geqslant \frac{\hbar^{2}}{4} \delta_{i j}, \text { or } \sigma_{r_{i}} \sigma_{p_{j}} \geqslant \frac{\hbar}{2} \delta_{i j}
$$

Problem 4.2 Use separation of variables in cartesian coordinates to solve the infinite cubical well (or "particle in a box"):

$$
V(x, y, z)= \begin{cases}0, & \text { if } x, y, z \text { are all between } 0 \text { and } a \\ \infty & \text { otherwise }\end{cases}
$$

a. Find the stationary states, and the corresponding energies.

The time-independent Schrödinger equation in 3D states that

$$
E \psi(\mathbf{r})=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r})
$$

where $\mathbf{r}=\left[\begin{array}{lll}x & y & z\end{array}\right]$, and $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$. Now let $\psi(\mathbf{r})=X(x) Y(y) Z(z) . \nabla^{2} \psi=X^{\prime \prime} Y Z+X Y^{\prime \prime} Z+X Y Z^{\prime \prime}$. Inside the box, $V=0$, so the Schrödinger equation simplifies to

$$
E X Y Z=-\frac{\hbar^{2}}{2 m} X^{\prime \prime} Y Z+X Y^{\prime \prime} Z+X Y Z^{\prime \prime}
$$

and dividing by $X Y Z$ and $-\hbar^{2} / 2 m$ we get

$$
-\frac{2 m E}{\hbar^{2}}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}
$$

Each term in the summation on the right is a function of a different variable, yet they sum to a constant. This can only be the case if each term is in fact constant itself. We shall call these constants $-\lambda_{x}^{2},-\lambda_{y}^{2}$, and $-\lambda_{z}^{2}$. We make these negative in order to make the energy positive, and we square them for reasons that will soon be made clear. Substituting and solving for E gives:

$$
E=\frac{\hbar^{2}}{2 m}\left(\lambda_{x}^{2}+\lambda_{y}^{2}+\lambda_{z}^{2}\right)
$$

and separating the three variables into a system of equations gives:

$$
X^{\prime \prime}+\lambda_{x}^{2} X=0 ; \quad Y^{\prime \prime}+\lambda_{y}^{2} Y=0 ; \quad Z^{\prime \prime}+\lambda_{z}^{2} Z=0
$$

Now we will solve the ODE for $X(x)$, and in doing so will solve the ODE's for $Y(y)$ and $Z(z)$ (just change the variable and constant names). The ODE for $X(x)$ is a familiar ODE, with solution

$$
X(x)=A_{x} \sin \left(\lambda_{x} x\right)+B_{x} \cos \left(\lambda_{x} x\right)
$$

Note that we now have λ_{x} instead of λ_{x}^{2}, but we could have, with equal validity, originally chosen constants μ_{x}, which would leave us now with $\sin \left(\sqrt{\mu_{x}} x\right)$.
Now consider the boundary conditions. As we know the potential is infinite outside the box, X must go to zero at the boundaries. So first we take the boundary condition $X(0)=0$:

$$
X(0)=A_{x} \sin (0)+B_{x} \cos (0)=B_{x}=0 .
$$

This removes the B_{x} term from the equation, and we can now take the second boundary condition, $X(a)=0$:

$$
X(a)=A_{x} \sin \left(\lambda_{x} a\right)=0
$$

This can imply either of two cases:

1. $A_{x}=0$, in which case $X \equiv 0$, and therefore $\psi \equiv 0$, which is non-normalizable, so we disregard it.
2. $\sin \left(\lambda_{x} a\right)=0$, in which case $\lambda_{x}=n_{x} \pi / a$ for any non-zero integer n_{x}. Negative values of n are redundant, and so we impose the constraint $n_{x} \in \mathbb{Z}^{+}$.

Now we can rewrite X as

$$
X_{n}(x)=A_{x} \sin \left(\frac{n_{x} \pi x}{a}\right)
$$

and normalize over $[0, a]$

$$
\int_{0}^{a} X_{n}^{*} X_{n} \mathrm{~d} x=\left|A_{x}\right|^{2} \int_{0}^{a} \sin ^{2}\left(\frac{n_{x} \pi x}{a}\right) \mathrm{d} x=\left|A_{x}\right|^{2} \frac{a}{2}=1 \Longrightarrow A_{x}=\sqrt{2 / a}
$$

Note that A_{x} is independent of x and n_{x}, and so $A_{x}=A_{y}=A_{z}$.
So we have now shown that

$$
\begin{gathered}
X_{n}(x)=\sqrt{2 / a} \sin \left(\frac{n_{x} \pi x}{a}\right) ; \quad Y_{n}(y)=\sqrt{2 / a} \sin \left(\frac{n_{y} \pi y}{a}\right) ; \quad Z_{n}(z)=\sqrt{2 / a} \sin \left(\frac{n_{z} \pi z}{a}\right) \\
\psi_{n}(\mathbf{r})=A_{x} A_{y} A_{z} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{a}\right) \sin \left(\frac{n_{z} \pi z}{a}\right)=(2 / a)^{3 / 2} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{a}\right) \sin \left(\frac{n_{z} \pi z}{a}\right), \\
E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) .
\end{gathered}
$$

b. Call the distinct energies $E_{1}, E_{2}, E_{3}, \ldots$, in order of increasing energy. Find E_{1} through E_{6}. Determine their degeneracies (that is, the number of different states that share the same energy).

As there will be many states with the same energy, and computing by hand will be tedious, I make use of the following python script to output $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source for the following table.

```
#!/usr/bin/python
from collections import defaultdict
from itertools import islice, product
def energy_states(highest_state):
    # a mapping of
    # E >> [(n_x, n_y, n_z), ...]
    states = defaultdict(list)
    for x, y, z in product(range(1, highest_state+1), repeat=3):
        E = x**2+y**2+z**2
        states[E].append([x, y, z])
    return states
def display(states, n_low, n_high):
    print(r"\begin{tabular}{ccc||r}")
    print(r"$n_x$ & $n_y$ & $n_z$ & $(n_x^2 + n_y^2 + n_z`^2)$ \\\hline")
    # display the energy states from n_ low to n_high
    for E in islice(sorted(states), n_low, n_high):
        print(r"\hline")
        for x, y, z in states[E]:
            print(r"{} & {} & {} & {}".format(x, y, z, E))
            print(r"\\")
    print(r"\end{tabular}")
if __name__ == "__main__":
    states = energy_states(5)
    print("Part b")
    display(states, 0, 6)
    print("Part c")
    # start from 13 since it is indexed by 0
    # stop at 14 because the end of islice is exclusive
    display(states, 13, 14)
```

n_{x}	n_{y}	n_{z}	$\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)$
1	1	1	3
1	1	2	6
1	2	1	6
2	1	1	6
1	2	2	9
2	1	2	9
2	2	1	9
1	1	3	11
1	3	1	11
3	1	1	11
2	2	2	12
1	2	3	14
1	3	2	14
2	1	3	14
2	3	1	14
3	1	2	14
3	2	1	14

$E_{1}=\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 1
$E_{2}=\frac{6 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 3
$E_{3}=\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 3
$E_{4}=\frac{11 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 3
$E_{5}=\frac{12 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 1
$E_{6}=\frac{14 \pi^{2} \hbar^{2}}{2 m a^{2}} ;$	degeneracy is 6

c. What is the degeneracy of E_{14} and why is this case interesting?

The following table displays the combinations of n which form E_{14}. There are 4 combinations, so the degeneracy is 4 .

n_{x}	n_{y}	n_{z}	$\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)$
1	1	5	27
1	5	1	27
3	3	3	27
5	1	1	27

Problem 4.16 A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons ($Z=1$ would be hydrogen itself, $Z=2$ is ionized helium, $Z=3$ is doubly ionized lithium, and so on). Determine the Bohr energies $E_{n}(Z)$, the binding energy $E_{1}(Z)$, the Bohr radius $a(Z)$, and the Rydberg constant $R(Z)$ for a hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum would the Lyman series fall, for $Z=2$ and $Z=3$?

The Coloumb potential is given by

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}
$$

and for a hydrogenic atom with Z protons, $Q=Z e$ and $q=-e$, so

$$
V(r)=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r} .
$$

We now substitute $V(r)$ into the radial wave equation, giving us

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} r^{2}}+\left[-Z \frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u
$$

Now we define

$$
\kappa=\frac{\sqrt{-2 m E}}{\hbar},
$$

and divide through by E, giving

$$
\frac{1}{\kappa^{2}} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} r^{2}}=\left[1-Z \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} \kappa} \frac{1}{\kappa r}+\frac{\ell(\ell+1)}{(\kappa r)^{2}}\right] u
$$

Now we define

$$
\rho \equiv \kappa r, \quad \text { and } \quad \rho_{0} \equiv \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} \kappa}
$$

giving us

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \rho^{2}}=\left[1-\frac{Z \rho_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right] u .
$$

Here is where the trick comes in. Let us define

$$
\tilde{\rho}_{0} \equiv Z \rho_{0}
$$

Now the wave equation is given by

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \rho^{2}}=\left[1-\frac{\tilde{\rho}_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right] u .
$$

If we treat $\tilde{\rho}_{0}$ as we treated ρ_{0} when dealing with the hydrogen atom, we wind up with the same results, up until the very end, where

$$
\tilde{\rho}_{0}=2 n .
$$

Unravelling our definition of $\tilde{\rho}_{0}$ gives us

$$
\tilde{\rho}_{0}=Z \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} \kappa}=Z \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar \sqrt{-2 m E}}
$$

Now we solve for $E_{n}(Z)$

$$
2 n=Z \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar \sqrt{-2 m E}} \Longrightarrow \sqrt{-2 m E}=Z \frac{m e^{2}}{4 \pi \varepsilon_{0} \hbar n} \Longrightarrow E_{n}(Z)=-\frac{m}{2 \hbar^{2}}\left[Z \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{2} \frac{1}{n^{2}} .
$$

Now Equation 4.70 gives E_{n} for hydrogen, which I will denote $E_{H, n}$, as

$$
E_{H, n}=-\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}}
$$

and so E_{n} for a hydrogenic atom is simply

$$
E_{n}(Z)=Z^{2} E_{H, n}
$$

The binding energy is therefore $E_{1}(Z)$

$$
E_{1}(Z)=Z^{2} E_{H, 1}=-Z^{2} \frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}=-Z^{2} 13.6 \mathrm{eV}
$$

To find the Bohr radius, we note that

$$
\kappa=Z\left(\frac{m e^{2}}{4 \pi \varepsilon_{0} \hbar^{2}}\right) \frac{1}{n}=Z \frac{1}{a_{H} n}=\frac{1}{a(Z) n}
$$

where a_{H} is the Bohr radius of hydrogen. It follows that $a(Z)=a_{H} / Z$, and so

$$
a(Z)=\frac{1}{Z} \frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}=\frac{0.529 \times 10^{-10} \mathrm{~m}}{Z}
$$

Now, to find the Rydberg constant, $R(Z)$, we first look at the energy difference E_{γ}

$$
E_{\gamma}(Z)=E_{i}(Z)-E_{f}(Z)=-Z^{2} 13.6 \mathrm{eV}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)
$$

and then translate that into $1 / \lambda$ via $E=h c / \lambda$, giving

$$
\frac{1}{\lambda}=\frac{E_{\gamma}(Z)}{h c}=-Z^{2} 13.6 \mathrm{eV}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)=Z^{2} R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=R(Z)\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

so $R(Z)=Z^{2} R_{H}=Z^{2} 1.097 \times 10^{7} \mathrm{~m}^{-1}$.
Since $R(Z)=Z^{2} R_{H}$, it follows that $\lambda(Z)^{-1}=Z^{2} \lambda_{H}^{-1}$, or $\lambda(Z)=\lambda_{H} / Z^{2}$.
I have taken the liberty of looking up the wavelengths for the Lyman series, and so for $Z=2$, I simply divide those by 4 , and for $Z=3$, I divide by 9 . The following table summarizes the results

Z	1	2	3
$\lambda(n=2)$	121.6 nm	30.40 nm	13.51 nm
$\lambda(n=\infty)$	91.18 nm	22.80 nm	10.13 nm
class	far / extreme	extreme	extreme
	UV	UV	UV

(Lyman series wavelengths taken from https://en.wikipedia.org/wiki/Lyman_series; EM Spectrum classes taken from http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf)

Problem 4.17 Consider the earth-sun system as a gravitational analog of the hydrogen atom.
a. What is the potential energy function (replacing Equation 4.52)? (Let m be the mass of the earth, and M the mass of the sun.)

Gravitational potential energy is given by

$$
V(r)=-G \frac{M m}{r}
$$

b. What is the "Bohr radius," a_{g}, for this system? Work out the actual number.

To find the Bohr radius, we first note that the given potential $V(r)$ is very similar to that of the hydrogen atom. We merely have to replace Coulomb's constant with G, and $Q q$ with $M m$. The radial wave equation is given by

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} r^{2}}+\left[-G \frac{M m}{r}+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u
$$

Once again, we define $\kappa=\sqrt{-2 m E} / \hbar$, and divide through by $E=-(\kappa \hbar)^{2} / 2 m$

$$
\frac{1}{\kappa^{2}} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} r^{2}}=\left[1-2 G \frac{M m^{2}}{\hbar^{2} \kappa} \frac{1}{\kappa r}+\frac{\ell(\ell+1)}{(\kappa r)^{2}}\right] u
$$

Now here's the trick, we define ρ and ρ_{0} as follows

$$
\rho \equiv \kappa r, \quad \text { and } \quad \rho_{0} \equiv 2 G \frac{M m^{2}}{\hbar^{2} \kappa}
$$

which puts us back where we were for the hydrogen atom,

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right] u
$$

except that once we unravel our definition of ρ_{0}, we will have different constants. From the text, we know that

$$
\begin{aligned}
\rho_{0} & =2 n=2 G \frac{M m^{2}}{\hbar^{2} \kappa}=2 G \frac{M m^{2}}{\hbar \sqrt{-2 m E}} \Longrightarrow n=G \frac{M m^{2}}{\hbar \sqrt{-2 m E}} \\
& \Longrightarrow \sqrt{-2 m E}=G \frac{M m^{2}}{\hbar n} \Longrightarrow E_{n}=-\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{1}{n^{2}}
\end{aligned}
$$

So the Bohr energy is

$$
E_{n}=-\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{1}{n^{2}}
$$

To find the Bohr radius, we return to ρ_{0} and solve for κ

$$
\rho_{0}=2 n=2 G \frac{M m^{2}}{\hbar^{2} \kappa} \Longrightarrow \kappa=\frac{G M m^{2}}{\hbar^{2}} \frac{1}{n}
$$

Now since $\kappa=1 /(a n)$, that means that

$$
\frac{1}{a_{g} n}=\frac{G M m^{2}}{\hbar^{2}} \frac{1}{n} \Longrightarrow a_{g}=\frac{\hbar^{2}}{G M m^{2}}
$$

and substituting $M=M_{\odot}=1.9891 \times 10^{30} \mathrm{~kg}, m=M_{\oplus}=5.9736 \times 10^{24} \mathrm{~kg}, G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, and $\hbar=1.0545715 \times 10^{-34} \mathrm{~J}$ s (constants taken from An Introduction to Modern Astrophysics, 2nd Edition by Carroll and Ostlie), we find

$$
\begin{aligned}
a_{g} & =\frac{\left(1.0545715 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)\left(1.9891 \times 10^{30} \mathrm{~kg}\right)\left(5.9736 \times 10^{24} \mathrm{~kg}\right)^{2}} \\
& =2.349 \times 10^{-138} \mathrm{~J}^{2} \mathrm{~s}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{~kg}^{2} \mathrm{~kg}^{-1} \mathrm{~kg}^{-2}=2.349 \times 10^{-138} \mathrm{~J}^{2} \mathrm{~s}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{~kg}^{-1} \\
& =2.349 \times 10^{-138} \mathrm{Js}^{2} \mathrm{~m}^{-1} \mathrm{~kg}^{-1}=2.349 \times 10^{-138} \mathrm{kgm}^{2} \mathrm{~s}^{-2} \mathrm{~s}^{2} \mathrm{~m}^{-1} \mathrm{~kg}^{-1} \\
& =2.349 \times 10^{-138} \mathrm{~m} \text { (tiny!)}
\end{aligned}
$$

c. Write down the gravitational "Bohr formula," and, by equating E_{n} to the classical energy of a planet in a circular orbit of radius r_{0}, show that $n=\sqrt{r_{0} / a_{g}}$. From this, estimate the quantum number n of the earth.

As was noted previously,

$$
E_{n}=-\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{1}{n^{2}}
$$

Classically, total energy is given by $E=V+T$, where V is potential energy (we've already found this), and T is kinetic energy. Kinetic energy is given by $m v^{2} / 2$, but we do not know v. To get around this, we take advantage of the fact that this is a circular orbit, and therefore has constant radius and velocity, making it centripetal motion. The net force on the Earth is simply the gravitational force exerted by the Sun, so we equate the gravitational force with the centripetal force

$$
m \frac{v^{2}}{r_{0}}=G \frac{M m}{r_{0}^{2}} \Longrightarrow m v^{2}=G \frac{M m}{r_{0}} \Longrightarrow \frac{1}{2} m v^{2}=G \frac{M m}{2 r_{0}}=T
$$

Now we substitute E_{n}, V and T into the total energy equation

$$
-\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{1}{n^{2}}=-G \frac{M m}{r_{0}}+G \frac{M m}{2 r_{0}}=-G \frac{M m}{2 r_{0}} .
$$

Solving for n we get

$$
\frac{1}{n^{2}}=G \frac{M m}{2 r_{0}} \frac{2 \hbar^{2}}{m} \frac{1}{(G M m)^{2}}=\frac{1}{r_{0}} \frac{\hbar^{2}}{G M m^{2}}=\frac{a_{g}}{r_{0}} \Longrightarrow n=\sqrt{\frac{r_{0}}{a_{g}}}
$$

We equate r_{0} to the semi-major axis of the Earth's orbit, which is 1 AU or $r_{0}=1.4959787066 \times 10^{11} \mathrm{~m}$ (from Carroll and Ostlie). Substituting this, along with a_{g} from earlier, gives

$$
n=\sqrt{\frac{1.4959787066 \times 10^{11} \mathrm{~m}}{2.349 \times 10^{-138} \mathrm{~m}}}=2.5236 \times 10^{74}
$$

d. Suppose the earth made a transition to the next lower level $(n-1)$. How much energy (in Joules) would be released? What would the wavelength of the emitted photon (or, more likely, graviton) be? (Express your answer in light years - is the remarkable answer a coincidence?)

The energy of the emitted photon would be

$$
E_{\gamma}=E_{n}-E_{n-1}=-\frac{m}{2 \hbar^{2}}(G M m)^{2}\left(\frac{1}{n^{2}}-\frac{1}{(n-1)^{2}}\right)
$$

Now, if we were to simply plug in the n from above, and enter it into a calculator, we would get 0 because n is so large that n and $n-1$ would be identical. We therefore need to find an approximation which contains only a single n term.

$$
\frac{1}{n^{2}}-\frac{1}{(n-1)^{2}}=\frac{(n-1)^{2}-n^{2}}{n^{2}(n-1)^{2}}=\frac{n^{2}-2 n+1-n^{2}}{n^{2}(n-1)^{2}}=\frac{-2 n+1}{n^{2}(n-1)^{2}}
$$

Here, we make the approximation $n-1 \approx n$, and $-2 n+1 \approx-2 n$, for large n. So

$$
\frac{1}{n^{2}}-\frac{1}{(n-1)^{2}} \approx \frac{-2 n}{n^{2} \cdot n^{2}}=\frac{-2}{n^{3}}
$$

which we then substitute back into E_{γ}

$$
E_{\gamma} \approx-\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{-2}{n^{3}}=\frac{m}{2 \hbar^{2}}(G M m)^{2} \frac{2}{n^{3}}
$$

now we plug in the constants

$$
\begin{aligned}
E_{\gamma} & =\frac{5.9736 \times 10^{24} \mathrm{~kg}}{2\left(\cdot 1.0545715 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}} \frac{2\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \cdot 1.9891 \times 10^{30} \mathrm{~kg} \cdot 5.9736 \times 10^{24} \mathrm{~kg}\right)^{2}}{\left(2.5236 \times 10^{74}\right)^{3}} \\
& =2.0993 \times 10^{-41} \mathrm{kgN}^{2} \mathrm{~m}^{4} \mathrm{~J}^{-2} \mathrm{~s}^{-2}=2.0993 \times 10^{-41} \mathrm{kgN}^{2} \mathrm{~m}^{4} \mathrm{~N}^{-2} \mathrm{~m}^{-2} \mathrm{~s}^{-2}=2.0993 \times 10^{-41} \mathrm{kgm}^{2} \mathrm{~s}^{-2} \\
& =2.0993 \times 10^{-41} \mathrm{~J}
\end{aligned}
$$

Now we find wavelength by means of $E=h c / \lambda$, using $h=6.626068 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ and $c=2.99792458 \times 10^{8} \mathrm{~ms}^{-1}$ (taken from Carroll and Ostlie),

$$
\lambda=\frac{h c}{E_{\gamma}}=\frac{6.626068 \times 10^{-34} \mathrm{~J} \mathrm{~s} \cdot 2.99792458 \times 10^{8} \mathrm{~ms}^{-1}}{2.0993 \times 10^{-41} \mathrm{~J}}=9.4623 \times 10^{15} \mathrm{~m}
$$

According to Carroll and Ostlie, 1 ly $=9.460730472 \times 10^{15} \mathrm{~m}$, which is approximately λ, so the wavelength of the emitted graviton is 1 ly .

