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Introduction

Quantum Numbers

o the stationary states of the hydrogen atom are given by three
numbers, n, £, and m

e n is the principal quantum number, and determines the energy of
the state

e ¢ and m are related to the orbital angular momentum
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Introduction

Angular Momentum

e classically, a particle’s angular momentum is given by
Yy, ap g

ypz_Zpy
L=rXp=|2p;— zp,
IPy — YDz

e now we simply replace classical momentum with the quantum
momentum operator

. y0/0z — 2 0/dy .
L:ﬁ z20/0x —x 0/0z :i_i(rxv)
z0/0y —y 0/0x
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Eigenvalues
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Eigenvalues

Fundamental Commutation Relations

e L; and L, do not commute

[Lara Ly] = [ypz — &Py, ZPx — l‘pz]
= [ypz, 202] — YDz, 2] — [20y, 205] + [2Dy, TD2]

o the only terms which fail to commute are [z, p,], [y, py], and [z, p;]
[La, Ly] = ypalpz, 2] + wpy[2, p2] = th(apy — ypa) = 1AL,

[Ly, Ly = thLy; [Ly, L) = thLy;  [L., Ly] = 1AL,
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Eigenvalues

Uncertainty Principle
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Eigenvalues

Total Angular Momentum

e since L, and L, do not commute, there are no eigenfunctions of
both L, and L,
@ however, the square of the total angular momentum does commute
with L,
P=L-L=L2+L,+L}
L% L) =0; [L* L) =0; [L*L)]=0

or

[I?,L] =0
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Eigenvalues

Ladder Operator

e since L? is compatible with each component of L, we can hope to
find simultaneous eigenstates of L? and any given component, say
L,

Pf=XN and Lf=pf

e we define the ladder operator
Ly =L, %L,

(L., L+] = [Ls, Ly] +4[L,, L) = thLy 4 1(—1hLy) = £h(L, + 1L,)
[L.,L+] =+hly and [L* Ly] =0
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Eigenvalues

Ladder Operator and Eigenfunctions

e if f is an eigenfunction of L? and L., so too is Lif
e since L? and Ly commute,

L*(Lef) = Li(L*f) = Le(Af) = A(L+f)

o L.f is an eigenfunction of L? with eigenvalue \
e since [L,, Ly| = +hLy,

L(Lif) = (Lol — LaL)f + Le Lof = £hLaf + Li(puf)
= (u =+ h)(Lf)

@ so L. f is an eigenfunction of L, with eigenvalue pu + A
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Eigenvalues

Raising and Lowering Operators

e L. f is an eigenfunction of L, with eigenvalue pu + A

e L, is the “raising” operator, since it increases the eigenvalue of L,
by h

o L_ is the “lowering” operator, since it decreases the eigenvalue of
L,byh

o for a given A, we obtain a “ladder” of states, with each “rung”
separated from its neighbors by % in the eigenvalue of L,
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Eigenvalues

Top Rung

P=L2+L+1L?

o if we allowed the raising operator to be applied forever, eventually
we would reach a point where L, > L?, which cannot be
@ there must exist a “top rung” of the ladder, f;, such that

Lifi=0
o let il be the eigenvalue of L, at this top rung

Lyfy = Wfy;  L*fy = A
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Eigenvalues

Top Rung
@ now we investigate what happens when one ladder operator is

applied to its inverse

Lils = (Ly +1L,)(Ly F1L,) = L2 + L2 ¥ o(L,L, — L, L)
Y
= [? — [? F1(1hL,)

e solving for L? gives

I =ILiLs + L2FhL,
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Eigenvalues

Top Rung

e we use the bottom of the 4, and find that
L*fy = (L_Ly + L2 + hL,)f, = (0 + h26% + B20) f, = h*0(L + 1),

Ly = B+ 1)f, = My = =R+ 1)

@ so we have found the eigenvalue of L? in terms of the maximum
eigenvalue of L,
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Eigenvalues

Bottom Rung

LP=L2+L+ 1L}

o for the same reasons, there must exist a bottom rung, f,, such that
L f,=0
e let Al be the eigenvalue of L, at this bottom rung

L.fy = hefy;  Lfy = My
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Eigenvalues

Bottom Rung

e we now use the top of the £, where we had previously used the
bottom, and find that

LPfy = (Ly Lo + L = hL,)fy = (0 + h*62 = B?0) fyy = W*0(€ = 1)y

L*f, = B2 — 1)fy = My => A= h*{({—1)
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Eigenvalues

Combining the Top and Bottom

@ we see that

A=T2l+1)=hH({l—1) = LL+1)=£L(—-1)

o there are two possibilities here

Q@ /(=(+1
e that would mean the bottom rung is higher than the top!
Q (=
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Eigenvalues

Eigenvalues of Angular Momentum

e we have just shown that the eigenvalues of L, are mh, where
m=—C—L+1,...;,1+£6,+¢L
o if we let the number of eigenvalues be N, then £ = —¢{ + N

¢=N/2

£ must be an integer, or a half-integer

0=0,1/2,1,3/2, ...

the eigenfunctions are characterized by ¢ and m

L2 = R20(0+ D) f™; L™ = hmf™
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yenfunctions

Eigenfunctions
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Eigenfunctions

Angular Momentum in Spherical Coordinates

o the angular momentum operator is

Lz%(rXV)

e in spherical coordinates, the gradient is given by

0 10 ~ 1 0
Vet T P 00

@ r is simply r
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Eigenfunctions

Angular Momentum in Spherical Coordinates
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Eigenfunctions

Angular Momentum in Spherical Coordinates

e write the unit vectors # and ¢ in cartesian coordinates

0 = (cos B cos ¢)i + (cosOsin ¢)j — (sin )k
¢ = —(sin¢)i+ (cos ¢)j

L= h (— sir1qbi+cos¢>j)2
1

06
— (cos 0 cos @i + cos O sin ¢j — sin Ok) L 9
! mes—s sin 0 O¢
i
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Eigenfunctions

Angular Momentum in Spherical Coordinates

e separating the z, y, and z components, we find

h ., 0 0
L, = ;(— squ% — cos ¢ cot 9%)
h 0 . 0
L,= ;<+ cos qb% — sin ¢ cot 9%)
h 0
b= ¢
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Eigenfunctions

Ladder Operators in Spherical Coordinates

e now we consider the ladder operators

Ly =L,+1L, = E[(— sin ¢ & 12 cos @) 0
?

) 0
2 (cos ¢ £ vsin @) cot 0—}

o
e by Euler’s formula, cos ¢ 4 2sin ¢ = exp(£1¢)

Ly = thexp(+i9) (% + 1 cot 9%)
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Eigenfunctions

Ladder Operators in Spherical Coordinates

0? 0 0? 0
L == — 20— 41—
L; h<892+cot980+cot e&bz—Haqﬁ)

e recall L2 = LiL++ L§ F hL,

S N LA T
L = h[, sin 6 +sin208¢2
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Eigenfunctions

Eigenfunctions of L?

o now we apply L? to its eigenfunction, f/(6, ¢), which has
eigenvalue h20(¢ + 1)

19 ) 1 82
2rm _ 32 v . 9 O g2 1y
Vi =—h [smaae(mea@)+Sin298¢2]fe R0+ 1)

o this is simply the angular equation

2
sin@2 (sin0@> + %712/ = —((L+1)sin?0Y

00 00
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Eigenfunctions

Eigenfunctions of L,

e f/" is also an eigenfunction of L, with eigenvalue mh

ho

Lafe™ = 1 09

o this is equivalent to the azimuthal equation

1 d%® 5

D dg?
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Eigenfunctions

Spherical Harmonics

o f/" is simply Y;™(0,¢), the spherical harmonic (after normalization)
e spherical harmonics are eigenfunctions of L? and L,

e when solving the Schrodinger equation by separation of variables,
we “inadvertently” constructed eigenfunctions of the three

commuting operators

Hi = Ep;  L*p = h2(L +1)y;  Lap = hmy
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Eigenfunctions

Schrodinger Equation

|

R 1 0 [ 00 1 L 1 0%
‘%[ﬁ@(r o) * a0 50) + rsirs | oo

+Vy = By

D

e we can now write the Schrodinger equation in this form

(2 () s o v

2mr?
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yenfunctions

Thank You
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