
Angular Momentum

Daniel Wysocki and Nicholas Jira

April 2, 2015

Daniel Wysocki and Nicholas Jira Angular Momentum April 2, 2015 1 / 30



Introduction

Introduction

Daniel Wysocki and Nicholas Jira Angular Momentum April 2, 2015 2 / 30



Introduction

Quantum Numbers

the stationary states of the hydrogen atom are given by three
numbers, n, `, and m
n is the principal quantum number, and determines the energy of
the state
` and m are related to the orbital angular momentum
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Introduction

Angular Momentum

classically, a particle’s angular momentum is given by

L = r× p =

ypz − zpy
zpx − xpz
xpy − ypx


now we simply replace classical momentum with the quantum
momentum operator

L = ı

~

y ∂/∂z − z ∂/∂y
z ∂/∂x − x ∂/∂z
x ∂/∂y − y ∂/∂x

 = ı

~
(r×∇)
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Eigenvalues

Eigenvalues
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Eigenvalues

Fundamental Commutation Relations

Lx and Ly do not commute

[Lx ,Ly] = [ypz − zpy, zpx − xpz ]
= [ypz , zpx ]− [ypz , xpz ]− [zpy, zpx ] + [zpy, xpz ]

the only terms which fail to commute are [x, px ], [y, py], and [z, pz ]

[Lx ,Ly] = ypx [pz , z] + xpy[z, pz ] = ı~(xpy − ypx) = ı~Lz

[Lx ,Ly] = ı~Lz ; [Ly,Lz ] = ı~Lx ; [Lz ,Lx ] = ı~Ly
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Eigenvalues

Uncertainty Principle

σ2
Aσ

2
B ≥

( 1
2ı 〈[A,B]〉

)2

σ2
Lxσ

2
Ly ≥

( 1
2ı 〈ı~Lz〉

)2
= ~2

4 〈Lz〉2

σLxσLy ≥
~
2 |〈Lz〉|
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Eigenvalues

Total Angular Momentum

since Lx and Ly do not commute, there are no eigenfunctions of
both Lx and Ly
however, the square of the total angular momentum does commute
with Lx

L2 = L · L = L2
x + L2

y + L2
z

[L2,Lx ] = 0; [L2,Ly] = 0; [L2,Lz ] = 0

or
[L2,L] = 0
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Eigenvalues

Ladder Operator

since L2 is compatible with each component of L, we can hope to
find simultaneous eigenstates of L2 and any given component, say
Lz

L2f = λf and Lz f = µf

we define the ladder operator

L± ≡ Lx ± ıLy

[Lz ,L±] = [Lz ,Lx ]± ı[Lz ,Ly] = ı~Ly ± ı(−ı~Lx) = ±~(Lx ± ıLy)

[Lz ,L±] = ±~L± and [L2,L±] = 0
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Eigenvalues

Ladder Operator and Eigenfunctions

if f is an eigenfunction of L2 and Lz , so too is L±f
since L2 and L± commute,

L2(L±f ) = L±(L2f ) = L±(λf ) = λ(L±f )

L±f is an eigenfunction of L2 with eigenvalue λ
since [Lz ,L±] = ±~L±,

Lz(L±f ) = (LzL± − L±Lz)f + L±Lz f = ±~L±f + L±(µf )
= (µ± ~)(L±f )

so L±f is an eigenfunction of Lz with eigenvalue µ± ~
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Eigenvalues

Raising and Lowering Operators

L±f is an eigenfunction of Lz with eigenvalue µ± ~
L+ is the “raising” operator, since it increases the eigenvalue of Lz
by ~
L− is the “lowering” operator, since it decreases the eigenvalue of
Lz by ~
for a given λ, we obtain a “ladder” of states, with each “rung”
separated from its neighbors by ~ in the eigenvalue of Lz
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Eigenvalues

Top Rung

L2 = L2
x + L2

y + L2
z

if we allowed the raising operator to be applied forever, eventually
we would reach a point where Lz > L2, which cannot be
there must exist a “top rung” of the ladder, ft , such that

L+ft = 0

let ~` be the eigenvalue of Lz at this top rung

Lz ft = ~`ft ; L2ft = λft
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Eigenvalues

Top Rung

now we investigate what happens when one ladder operator is
applied to its inverse

L±L∓ = (Lx ± ıLy)(Lx ∓ ıLy) = L2
x + L2

y ∓ ı(LxLy − LyLx)
= L2 − L2

z ∓ ı(ı~Lz)

solving for L2 gives

L2 = L±L∓ + L2
z ∓ ~Lz
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Eigenvalues

Top Rung

we use the bottom of the ±, and find that

L2ft = (L−L+ + L2
z + ~Lz)ft = (0 + ~2`2 + ~2`)ft = ~2`(`+ 1)ft

L2ft = ~2`(`+ 1)ft = λft =⇒ λ = ~2`(`+ 1)

so we have found the eigenvalue of L2 in terms of the maximum
eigenvalue of Lz
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Eigenvalues

Bottom Rung

L2 = L2
x + L2

y + L2
z

for the same reasons, there must exist a bottom rung, fb, such that

L−fb = 0

let ~¯̀ be the eigenvalue of Lz at this bottom rung

Lz fb = ~¯̀fb; L2fb = λfb
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Eigenvalues

Bottom Rung

we now use the top of the ±, where we had previously used the
bottom, and find that

L2fb = (L+L− + L2
z − ~Lz)fb = (0 + ~2 ¯̀2 − ~2 ¯̀)fb = ~2 ¯̀(¯̀− 1)fb

L2fb = ~2 ¯̀(¯̀− 1)fb = λfb =⇒ λ = ~2 ¯̀(¯̀− 1)
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Eigenvalues

Combining the Top and Bottom

we see that

λ = ~2`(`+ 1) = ~2 ¯̀(¯̀− 1) =⇒ `(`+ 1) = ¯̀(¯̀− 1)

there are two possibilities here

1 ¯̀= `+ 1
that would mean the bottom rung is higher than the top!

2 ¯̀= −`
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Eigenvalues

Eigenvalues of Angular Momentum

we have just shown that the eigenvalues of Lz are m~, where
m = −`,−`+ 1, . . . , 1 + `,+`
if we let the number of eigenvalues be N , then ` = −`+ N

` = N/2

` must be an integer, or a half-integer

` = 0, 1/2, 1, 3/2, . . .

the eigenfunctions are characterized by ` and m

L2f m
` = ~2`(`+ 1)f m

` ; Lz f m
` = ~mf m

`
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Eigenfunctions

Eigenfunctions
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Eigenfunctions

Angular Momentum in Spherical Coordinates

the angular momentum operator is

L = ı

~
(r×∇)

in spherical coordinates, the gradient is given by

∇ = r̂ ∂

∂r + θ̂
1
r
∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ

r is simply r r̂
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Eigenfunctions

Angular Momentum in Spherical Coordinates

L = ~
ı

[
r(r̂ × r̂) ∂

∂r + (r̂ × θ̂) ∂
∂θ

+ (r̂ × φ̂) 1
sin θ

∂

∂φ

]

(r̂ × r̂) = 0, (r̂ × θ̂) = φ̂, and (r̂ × φ̂) = −θ̂

L = ~
ı

(
φ̂
∂

∂θ
− θ̂ 1

sin θ
∂

∂φ

)
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Eigenfunctions

Angular Momentum in Spherical Coordinates

write the unit vectors θ̂ and φ̂ in cartesian coordinates

θ̂ = (cos θ cosφ)̂ı+ (cos θ sinφ)̂− (sin θ)k̂
φ̂ = −(sinφ)̂ı+ (cosφ)̂

L = ~
ı

[
(− sinφı̂+ cosφ̂) ∂

∂θ

− (cos θ cosφı̂+ cos θ sinφ̂− sin θk̂) 1
sin θ

∂

∂φ

]
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Eigenfunctions

Angular Momentum in Spherical Coordinates

separating the x, y, and z components, we find

Lx = ~
ı

(
− sinφ ∂

∂θ
− cosφ cot θ ∂

∂φ

)
Ly = ~

ı

(
+ cosφ ∂

∂θ
− sinφ cot θ ∂

∂φ

)
Lz = ~

ı

∂

∂φ
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Eigenfunctions

Ladder Operators in Spherical Coordinates

now we consider the ladder operators

L± = Lx±ıLy = ~
ı

[
(− sinφ± ı cosφ) ∂

∂θ
− (cosφ± ı sinφ) cot θ ∂

∂φ

]
by Euler’s formula, cosφ± ı sinφ = exp(±ıφ)

L± = ±~ exp(±ıφ)
(
∂

∂θ
± ı cot θ ∂

∂φ

)
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Eigenfunctions

Ladder Operators in Spherical Coordinates

L+L− = −~2
(
∂2

∂θ2 + cot θ ∂
∂θ

+ cot2 θ
∂2

∂φ2 + ı
∂

∂φ

)

recall L2 = L±L∓ + L2
z ∓ ~Lz

L2 = −~2
[

1
sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
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Eigenfunctions

Eigenfunctions of L2

now we apply L2 to its eigenfunction, f m
` (θ, φ), which has

eigenvalue ~2`(`+ 1)

L2f m
` = −~2

[
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
f m
` = ~2`(`+ 1)f m

`

this is simply the angular equation

sin θ ∂
∂θ

(
sin θ∂y

∂θ

)
+ ∂2Y
∂φ2 = −`(`+ 1) sin2 θY
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Eigenfunctions

Eigenfunctions of Lz

f m
` is also an eigenfunction of Lz with eigenvalue m~

Lz f m
` = ~

ı

∂

∂φ
f m
` = ~mf m

`

this is equivalent to the azimuthal equation

1
Φ
d2Φ
dφ2 = −m2
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Eigenfunctions

Spherical Harmonics

f m
` is simply Y m

` (θ, φ), the spherical harmonic (after normalization)
spherical harmonics are eigenfunctions of L2 and Lz
when solving the Schrödinger equation by separation of variables,
we “inadvertently” constructed eigenfunctions of the three
commuting operators

Hψ = Eψ; L2ψ = ~2`(`+ 1)ψ; Lzψ = ~mψ
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Eigenfunctions

Schrödinger Equation

− ~2

2m

[
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+ 1

r2 sin θ
∂

∂θ

(
sin θ∂ψ

∂θ

)
+ 1

r2 sin2 θ

(
∂2ψ

∂θ2

)]
+Vψ = Eψ

we can now write the Schrödinger equation in this form

1
2mr2

[
−~2 ∂

∂r

(
r2 ∂

∂r

)
+ L2

]
ψ + Vψ = Eψ

Daniel Wysocki and Nicholas Jira Angular Momentum April 2, 2015 29 / 30



Eigenfunctions

Thank You
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