Angular Momentum

Daniel Wysocki and Nicholas Jira

April 2, 2015

Introduction

Quantum Numbers

- the stationary states of the hydrogen atom are given by three numbers, n, ℓ, and m
- n is the principal quantum number, and determines the energy of the state
- ℓ and m are related to the orbital angular momentum

Angular Momentum

- classically, a particle's angular momentum is given by

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=\left[\begin{array}{c}
y p_{z}-z p_{y} \\
z p_{x}-x p_{z} \\
x p_{y}-y p_{x}
\end{array}\right]
$$

- now we simply replace classical momentum with the quantum momentum operator

$$
\mathbf{L}=\frac{\imath}{\hbar}\left[\begin{array}{l}
y \partial / \partial z-z \partial / \partial y \\
z \partial / \partial x-x \partial / \partial z \\
x \partial / \partial y-y \partial / \partial x
\end{array}\right]=\frac{\imath}{\hbar}(\mathbf{r} \times \nabla)
$$

Eigenvalues

Fundamental Commutation Relations

- L_{x} and L_{y} do not commute

$$
\begin{aligned}
{\left[L_{x}, L_{y}\right] } & =\left[y p_{z}-z p_{y}, z p_{x}-x p_{z}\right] \\
& =\left[y p_{z}, z p_{x}\right]-\left[y p_{z}, x p_{z}\right]-\left[z p_{y}, z p_{x}\right]+\left[z p_{y}, x p_{z}\right]
\end{aligned}
$$

- the only terms which fail to commute are $\left[x, p_{x}\right],\left[y, p_{y}\right]$, and $\left[z, p_{z}\right]$

$$
\begin{gathered}
{\left[L_{x}, L_{y}\right]=y p_{x}\left[p_{z}, z\right]+x p_{y}\left[z, p_{z}\right]=\imath \hbar\left(x p_{y}-y p_{x}\right)=\imath \hbar L_{z}} \\
{\left[L_{x}, L_{y}\right]=\imath \hbar L_{z} ; \quad\left[L_{y}, L_{z}\right]=\imath \hbar L_{x} ; \quad\left[L_{z}, L_{x}\right]=\imath \hbar L_{y}}
\end{gathered}
$$

Uncertainty Principle

$$
\begin{gathered}
\sigma_{A}^{2} \sigma_{B}^{2} \geq\left(\frac{1}{2 \imath}\langle[A, B]\rangle\right)^{2} \\
\sigma_{L_{x}}^{2} \sigma_{L_{y}}^{2} \geq\left(\frac{1}{2 \imath}\left\langle\imath \hbar L_{z}\right\rangle\right)^{2}=\frac{\hbar^{2}}{4}\left\langle L_{z}\right\rangle^{2} \\
\sigma_{L_{x}} \sigma_{L_{y}} \geq \frac{\hbar}{2}\left|\left\langle L_{z}\right\rangle\right|
\end{gathered}
$$

Total Angular Momentum

- since L_{x} and L_{y} do not commute, there are no eigenfunctions of both L_{x} and L_{y}
- however, the square of the total angular momentum does commute with L_{x}

$$
\begin{gathered}
L^{2}=\mathbf{L} \cdot \mathbf{L}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \\
{\left[L^{2}, L_{x}\right]=0 ; \quad\left[L^{2}, L_{y}\right]=0 ; \quad\left[L^{2}, L_{z}\right]=0}
\end{gathered}
$$

or

$$
\left[L^{2}, \mathbf{L}\right]=\mathbf{0}
$$

Ladder Operator

- since L^{2} is compatible with each component of \mathbf{L}, we can hope to find simultaneous eigenstates of L^{2} and any given component, say L_{z}

$$
L^{2} f=\lambda f \quad \text { and } \quad L_{z} f=\mu f
$$

- we define the ladder operator

$$
\begin{gathered}
L_{ \pm} \equiv L_{x} \pm \imath L_{y} \\
{\left[L_{z}, L_{ \pm}\right]=\left[L_{z}, L_{x}\right] \pm \imath\left[L_{z}, L_{y}\right]=\imath \hbar L_{y} \pm \imath\left(-\imath \hbar L_{x}\right)= \pm \hbar\left(L_{x} \pm \imath L_{y}\right)} \\
{\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm} \text {and }\left[L^{2}, L_{ \pm}\right]=0}
\end{gathered}
$$

Ladder Operator and Eigenfunctions

- if f is an eigenfunction of L^{2} and L_{z}, so too is $L_{ \pm} f$
- since L^{2} and $L_{ \pm}$commute,

$$
L^{2}\left(L_{ \pm} f\right)=L_{ \pm}\left(L^{2} f\right)=L_{ \pm}(\lambda f)=\lambda\left(L_{ \pm} f\right)
$$

- $L_{ \pm} f$ is an eigenfunction of L^{2} with eigenvalue λ
- since $\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}$,

$$
\begin{aligned}
L_{z}\left(L_{ \pm} f\right) & =\left(L_{z} L_{ \pm}-L_{ \pm} L_{z}\right) f+L_{ \pm} L_{z} f= \pm \hbar L_{ \pm} f+L_{ \pm}(\mu f) \\
& =(\mu \pm \hbar)\left(L_{ \pm} f\right)
\end{aligned}
$$

- so $L_{ \pm} f$ is an eigenfunction of L_{z} with eigenvalue $\mu \pm \hbar$

Raising and Lowering Operators

- $L_{ \pm} f$ is an eigenfunction of L_{z} with eigenvalue $\mu \pm \hbar$
- L_{+}is the "raising" operator, since it increases the eigenvalue of L_{z} by \hbar
- L_{-}is the "lowering" operator, since it decreases the eigenvalue of L_{z} by \hbar
- for a given λ, we obtain a "ladder" of states, with each "rung" separated from its neighbors by \hbar in the eigenvalue of L_{z}

Top Rung

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

- if we allowed the raising operator to be applied forever, eventually we would reach a point where $L_{z}>L^{2}$, which cannot be
- there must exist a "top rung" of the ladder, f_{t}, such that

$$
L_{+} f_{t}=0
$$

- let $\hbar \ell$ be the eigenvalue of L_{z} at this top rung

$$
L_{z} f_{t}=\hbar \ell f_{t} ; \quad L^{2} f_{t}=\lambda f_{t}
$$

Top Rung

- now we investigate what happens when one ladder operator is applied to its inverse

$$
\begin{aligned}
L_{ \pm} L_{\mp} & =\left(L_{x} \pm \imath L_{y}\right)\left(L_{x} \mp \imath L_{y}\right)=L_{x}^{2}+L_{y}^{2} \mp \imath\left(L_{x} L_{y}-L_{y} L_{x}\right) \\
& =L^{2}-L_{z}^{2} \mp \imath\left(\imath \hbar L_{z}\right)
\end{aligned}
$$

- solving for L^{2} gives

$$
L^{2}=L_{ \pm} L_{\mp}+L_{z}^{2} \mp \hbar L_{z}
$$

Top Rung

- we use the bottom of the \pm, and find that

$$
\begin{gathered}
L^{2} f_{t}=\left(L_{-} L_{+}+L_{z}^{2}+\hbar L_{z}\right) f_{t}=\left(0+\hbar^{2} \ell^{2}+\hbar^{2} \ell\right) f_{t}=\hbar^{2} \ell(\ell+1) f_{t} \\
L^{2} f_{t}=\hbar^{2} \ell(\ell+1) f_{t}=\lambda f_{t} \Longrightarrow \lambda=\hbar^{2} \ell(\ell+1)
\end{gathered}
$$

- so we have found the eigenvalue of L^{2} in terms of the maximum eigenvalue of L_{z}

Bottom Rung

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

- for the same reasons, there must exist a bottom rung, f_{b}, such that

$$
L_{-} f_{b}=0
$$

- let $\hbar \bar{\ell}$ be the eigenvalue of L_{z} at this bottom rung

$$
L_{z} f_{b}=\hbar \bar{\ell} f_{b} ; \quad L^{2} f_{b}=\lambda f_{b}
$$

Bottom Rung

- we now use the top of the \pm, where we had previously used the bottom, and find that

$$
\begin{gathered}
L^{2} f_{b}=\left(L_{+} L_{-}+L_{z}^{2}-\hbar L_{z}\right) f_{b}=\left(0+\hbar^{2} \bar{\ell}^{2}-\hbar^{2} \bar{\ell}\right) f_{b}=\hbar^{2} \bar{\ell}(\bar{\ell}-1) f_{b} \\
L^{2} f_{b}=\hbar^{2} \bar{\ell}(\bar{\ell}-1) f_{b}=\lambda f_{b} \Longrightarrow \lambda=\hbar^{2} \bar{\ell}(\bar{\ell}-1)
\end{gathered}
$$

Combining the Top and Bottom

- we see that

$$
\lambda=\hbar^{2} \ell(\ell+1)=\hbar^{2} \bar{\ell}(\bar{\ell}-1) \Longrightarrow \ell(\ell+1)=\bar{\ell}(\bar{\ell}-1)
$$

- there are two possibilities here
(1) $\bar{\ell}=\ell+1$
- that would mean the bottom rung is higher than the top!
(2) $\bar{\ell}=-\ell$

Eigenvalues of Angular Momentum

- we have just shown that the eigenvalues of L_{z} are $m \hbar$, where $m=-\ell,-\ell+1, \ldots, 1+\ell,+\ell$
- if we let the number of eigenvalues be N, then $\ell=-\ell+N$

$$
\ell=N / 2
$$

- ℓ must be an integer, or a half-integer

$$
\ell=0,1 / 2,1,3 / 2, \ldots
$$

- the eigenfunctions are characterized by ℓ and m

$$
L^{2} f_{\ell}^{m}=\hbar^{2} \ell(\ell+1) f_{\ell}^{m} ; \quad L_{z} f_{\ell}^{m}=\hbar m f_{\ell}^{m}
$$

Eigenfunctions

Angular Momentum in Spherical Coordinates

- the angular momentum operator is

$$
\mathbf{L}=\frac{\imath}{\hbar}(\mathbf{r} \times \boldsymbol{\nabla})
$$

- in spherical coordinates, the gradient is given by

$$
\boldsymbol{\nabla}=\hat{r} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

- \mathbf{r} is simply $r \hat{r}$

Angular Momentum in Spherical Coordinates

$$
\mathbf{L}=\frac{\hbar}{\imath}\left[r(\hat{r} \times \hat{r}) \frac{\partial}{\partial r}+(\hat{r} \times \hat{\theta}) \frac{\partial}{\partial \theta}+(\hat{r} \times \hat{\phi}) \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right]
$$

- $(\hat{r} \times \hat{r})=0,(\hat{r} \times \hat{\theta})=\hat{\phi}$, and $(\hat{r} \times \hat{\phi})=-\hat{\theta}$

$$
\mathbf{L}=\frac{\hbar}{\imath}\left(\hat{\phi} \frac{\partial}{\partial \theta}-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right)
$$

Angular Momentum in Spherical Coordinates

- write the unit vectors $\hat{\theta}$ and $\hat{\phi}$ in cartesian coordinates

$$
\begin{aligned}
& \hat{\theta}=(\cos \theta \cos \phi) \hat{\imath}+(\cos \theta \sin \phi) \hat{\jmath}-(\sin \theta) \hat{k} \\
& \hat{\phi}=-(\sin \phi) \hat{\imath}+(\cos \phi) \hat{\jmath} \\
& \mathbf{L}=\frac{\hbar}{\imath}\left[(-\sin \phi \hat{\imath}+\cos \phi \hat{\jmath}) \frac{\partial}{\partial \theta}\right. \\
&\left.-(\cos \theta \cos \phi \hat{\imath}+\cos \theta \sin \phi \hat{\jmath}-\sin \theta \hat{k}) \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right]
\end{aligned}
$$

Angular Momentum in Spherical Coordinates

- separating the x, y, and z components, we find

$$
\begin{aligned}
L_{x} & =\frac{\hbar}{\imath}\left(-\sin \phi \frac{\partial}{\partial \theta}-\cos \phi \cot \theta \frac{\partial}{\partial \phi}\right) \\
L_{y} & =\frac{\hbar}{\imath}\left(+\cos \phi \frac{\partial}{\partial \theta}-\sin \phi \cot \theta \frac{\partial}{\partial \phi}\right) \\
L_{z} & =\frac{\hbar}{\imath} \frac{\partial}{\partial \phi}
\end{aligned}
$$

Ladder Operators in Spherical Coordinates

- now we consider the ladder operators

$$
L_{ \pm}=L_{x} \pm \imath L_{y}=\frac{\hbar}{\imath}\left[(-\sin \phi \pm \imath \cos \phi) \frac{\partial}{\partial \theta}-(\cos \phi \pm \imath \sin \phi) \cot \theta \frac{\partial}{\partial \phi}\right]
$$

- by Euler's formula, $\cos \phi \pm \imath \sin \phi=\exp (\pm \imath \phi)$

$$
L_{ \pm}= \pm \hbar \exp (\pm \imath \phi)\left(\frac{\partial}{\partial \theta} \pm \imath \cot \theta \frac{\partial}{\partial \phi}\right)
$$

Ladder Operators in Spherical Coordinates

$$
L_{+} L_{-}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\cot ^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}}+\imath \frac{\partial}{\partial \phi}\right)
$$

- recall $L^{2}=L_{ \pm} L_{\mp}+L_{z}^{2} \mp \hbar L_{z}$

$$
L^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

Eigenfunctions of L^{2}

- now we apply L^{2} to its eigenfunction, $f_{\ell}^{m}(\theta, \phi)$, which has eigenvalue $\hbar^{2} \ell(\ell+1)$

$$
L^{2} f_{\ell}^{m}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] f_{\ell}^{m}=\hbar^{2} \ell(\ell+1) f_{\ell}^{m}
$$

- this is simply the angular equation

$$
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-\ell(\ell+1) \sin ^{2} \theta Y
$$

Eigenfunctions of L_{z}

- f_{ℓ}^{m} is also an eigenfunction of L_{z} with eigenvalue $m \hbar$

$$
L_{z} f_{\ell}^{m}=\frac{\hbar}{\imath} \frac{\partial}{\partial \phi} f_{\ell}^{m}=\hbar m f_{\ell}^{m}
$$

- this is equivalent to the azimuthal equation

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-m^{2}
$$

Spherical Harmonics

- f_{ℓ}^{m} is simply $Y_{\ell}^{m}(\theta, \phi)$, the spherical harmonic (after normalization)
- spherical harmonics are eigenfunctions of L^{2} and L_{z}
- when solving the Schrödinger equation by separation of variables, we "inadvertently" constructed eigenfunctions of the three commuting operators

$$
H \psi=E \psi ; \quad L^{2} \psi=\hbar^{2} \ell(\ell+1) \psi ; \quad L_{z} \psi=\hbar m \psi
$$

Schrödinger Equation

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2} \psi}{\partial \theta^{2}}\right)\right] \\
+V \psi=E \psi
\end{array}
$$

- we can now write the Schrödinger equation in this form

$$
\frac{1}{2 m r^{2}}\left[-\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+L^{2}\right] \psi+V \psi=E \psi
$$

Thank You

