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Wave Function

the free particle has potential V (x) = 0 everywhere

classically this would give the particle constant velocity, but it is
surprisingly tricky in quantum mechanics
since V = 0, the time-independent Schrödinger wave equation is
given by
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the free particle has potential V (x) = 0 everywhere
classically this would give the particle constant velocity, but it is
surprisingly tricky in quantum mechanics
since V = 0, the time-independent Schrödinger wave equation is
given by

− ~2

2m
d2ψ

dx2 = Eψ

d2ψ

dx2 = −k2ψ, where k :=
√
2mE
~
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Wave Function

this is a differential equation whose characteristic equation has
imaginary roots

ψ(x) = Aeıkx + Be−ıkx

multiplying by the time dependence ϕ(t), we have the
time-dependent wave equation

the first term represents a wave travelling to the right, and the
second to the left
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time-dependent wave equation

Ψ(x, t) =
[
Aeıkx + Be−ıkx

]
exp

(
− ıE

~
t
)

Ψ(x, t) = A exp

ık (x − ~k
2mt
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Wave Function

since each wave only differs by the sign of k, it will be useful to
redefine k as

k := ±
√
2mE
~

now we may rewrite the wave function as
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√
2mE
~

now we may rewrite the wave function as

Ψk(x, t) = A exp

ı(kx − ~k2

2m t
)
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Normalization

we cannot normalize Ψk , because Ψ∗kΨk = |A|2, giving∫ +∞

−∞
Ψ∗kΨk dx = |A|2

∫ +∞

−∞
dx = |A|2 · ∞

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 2 February 12, 2015 7 / 30



General Solution

the general solution is still a linear combination of the separable
solutions

this time k is not restricted to integral values, and so the linear
combination must be an integral over k

in essence, (1/
√
2π)φ(k) dk is taking the place of the coefficients cn

in the discrete summation
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General Solution

in a specific problem, we are typically given an initial condition
Ψ(x, 0), and are asked to find Ψ(x, t)

we only now have to solve for φ(k)
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2π
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−∞
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General Solution

this is a classic problem in Fourier analysis, whose answer is
provided by Plancherel’s theorem

f (x) = 1√
2π

∫ +∞

−∞
F(k)eıkx dk ⇐⇒ F(k) = 1√

2π

∫ +∞

−∞
f (x)e−ıkx dx

applying this to our problem gives

now we can find Ψ(x, t)
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de Broglie Wavelength and Speed

these propogating waves have wavelength λ = 2π/|k|, and therefore
have momentum p = ~k

the speed of the waves is given by dividing the coefficient of t by
that of x in Ψk(x, t), giving

this is contrary to classical speed, which can be determined, for a
free particle, by kinetic energy E = (1/2)mv2
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have momentum p = ~k
the speed of the waves is given by dividing the coefficient of t by
that of x in Ψk(x, t), giving

vquantum = ~|k|
2m =

√
E
2m

this is contrary to classical speed, which can be determined, for a
free particle, by kinetic energy E = (1/2)mv2

vclassical =

√
2E
m = 2vquantum
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Group and Phase Velocity

the quantum velocity corresponds to the phase velocity, the velocity
of the individual ripples

the classical velocity corresponds to the group velocity, the velocity
of the envelope

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 2 February 12, 2015 12 / 30



Group and Phase Velocity

the quantum velocity corresponds to the phase velocity, the velocity
of the individual ripples
the classical velocity corresponds to the group velocity, the velocity
of the envelope

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 2 February 12, 2015 12 / 30



The Delta-Function Potential
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Classical Bound States and Scattering States

imagine a particle in a one-dimensional, time-independent potential
well, V (x)

in the classical realm, if V (x) at a point is greater than the
particle’s total energy E , it may never pass that point

turning points

if the particle is on some interval (a, b), and both V (a) and V (b)
exceed E , then the particle is “stuck”

bound state

if, on either side of the particle, E exceeds all values of V (x), then
the particle will go off to infinity

scattering state
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Classical Bound and Scattering states
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Quantum Bound States and Scattering States

in the quantum realm, a particle may tunnel through any finite
potential barrier

now all that matters is the potential at infinity

in practice, most potentials go to zero at infinity, simplifying the
criterion to
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now all that matters is the potential at infinityE < [V (−∞) and V (+∞)] =⇒ bound state,

E > [V (−∞) or V (+∞)] =⇒ scattering state.

in practice, most potentials go to zero at infinity, simplifying the
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Quantum Bound States and Scattering States

bound state for classical particle, but scattering state for quantum
particle
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The Delta–Function Well

the Dirac delta function has infinite height, infinitesimal width,
and an area of 1

δ(x) :=

0, if x 6= 0
∞, if x = 0

, with
∫ +∞

−∞
δ(x) dx = 1.
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The Delta–Function Well

δ(x − a) would be a spike of area 1 at the point a

multiplying by a function f (x) is equivalent to multiplying by f (a),
as it is zero everywhere outside of a
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The Delta–Function Well

as an example, consider a potential V (x) = −αδ(x)

the wave function has exactly one bound state, regardless of the
magnitude of α

by considering the scattering state, we encounter several waves

incident wave
reflected wave
transmitted wave
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Reflection and Transmission

R is the fraction of incoming particles that will bounce back

T is the fraction of incoming that will pass through the barrier

the probability of transmission is proportional to the energy
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The Finite Square Well
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Problem

consider the finite square well potential, where V0 is a positive real
potential

V (x) =

−V0, for −a ≤ x ≤ a,
0, for |x| > a,
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General Solution

the general solution is given by
Fe−κx , for x > a,
D cos(lx), for 0 < x < a,
ψ(−x), for x < 0.

continuity of ψ(x) and dψ
dx at the boundaries imply κ = l tan(la),

where
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where

κ :=
√
−2mE
~

l :=
√
2m(E + V0)

~
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Energy of the Finite Square Well

κ and l are both functions of E , so to solve for E we first define:

z := la, and z0 := a
~
√
2mV0.

these can be rewritten as a transcendental equation

can only be solved numerically
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Energy of the Finite Square Well
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Wide, Deep Well

if z0 is very large, the intersections occur just below zn = nπ/2,
where n is odd

En + V0 ∼=
1
2m

(
nπ~
2a

)2

there are a finite number of bound states, but as V0 →∞, it
approaches the infinite square well, with infinite bound states
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Shallow, Narrow Well

as z0 decreases, so too does the number of bound states

this reaches a limit at z0 < π/2, where the lowest odd state
disappears, leaving a single state
no matter how small z0 becomes, the number of bound states is
always at least one
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Transmission

T−1 = 1 + V 2
0

4E(E + V0) sin
2
(2a

~

√
2m(E + V0)

)

when the sine is zero, T = 1 (the well becomes “transparent”)
leaving us with

En + V0 = n2π2~2

2m(2a)2

these are the allowed energies of the infinite square well
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Thank you!
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