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The Free Particle
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Wave Function

e the free particle has potential V(z) = 0 everywhere
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Wave Function
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Wave Function

e the free particle has potential V(z) = 0 everywhere

e classically this would give the particle constant velocity, but it is
surprisingly tricky in quantum mechanics

e since V = 0, the time-independent Schrédinger wave equation is

given by
h? d%y
=F
C 2m da? v
2 2mE
i;f = —k%p, where k= ;Ln
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Wave Function

imaginary roots

o this is a differential equation whose characteristic equation has

TP(»’L’) — Aezkm_'_Befzkx
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Wave Function

o this is a differential equation whose characteristic equation has
imaginary roots
iﬁ(fﬂ) — Aezkx + Be—zkm

e multiplying by the time dependence ¢(t), we have the
time-dependent wave equation

E
U(z,t) = {Ae’kx + Be_”“} exp <—%t>

hk hk
U(z,t) = Aexp |1k (:13 — 2—t> + Bexp | —tk <x+ %t>

m
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Wave Function

o this is a differential equation whose characteristic equation has
imaginary roots

¢($) — Aezkx+Be—zkz

e multiplying by the time dependence ¢(t), we have the
time-dependent wave equation

E
U(z,t) = {Ae’kx + Be_““} exp (—%t)

hk hk
U(z,t) = Aexp |1k (:Jc — %t> + Bexp | —tk <x+ %t>

@ the first term represents a wave travelling to the right, and the
second to the left
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Wave Function

@ since each wave only differs by the sign of &, it will be useful to
redefine £ as

2mE

k:=+
h
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Wave Function

@ since each wave only differs by the sign of k, it will be useful to
redefine k as

2mE
h

e now we may rewrite the wave function as

k:=+

hk?
Uy(z,t) = Aexp |2 (k:c - %t>
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Normalization

o we cannot normalize Wy, because Wiy = |A|?, giving

+oo “+o0o
/ \I/Z\Ilkdx:|A|2/ dz = |A? - 00
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General Solution

e the general solution is still a linear combination of the separable
solutions
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General Solution

o the general solution is still a linear combination of the separable
solutions

o this time k is not restricted to integral values, and so the linear
combination must be an integral over k

+oo hk2
U(z,t) = \/%/ k)exp |2 kx—2—t dk
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General Solution

o the general solution is still a linear combination of the separable
solutions

o this time k is not restricted to integral values, and so the linear
combination must be an integral over k

-I—oo hk2
U(z,t) = \/%/ k)exp |2 kx—2—t dk

e in essence, (1/v/2m)p(k)dk is taking the place of the coefficients ¢,
in the discrete summation
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General Solution

@ in a specific problem, we are typically given an initial condition
U(z,0), and are asked to find ¥(z, ¢)
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General Solution

@ in a specific problem, we are typically given an initial condition
U(z,0), and are asked to find ¥(z, ¢)
e we only now have to solve for ¢(k)

(z,0) e dk

m/¢
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General Solution

o this is a classic problem in Fourier analysis, whose answer is
provided by Plancherel’s theorem

1 Feo 1KT _ 1 Heo —1RT
f(:r:):\/—Q_ﬂ/oo F(k) e dlk F(k)—\/—Q_ﬁ/OO f(z)e " dz
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General Solution

o this is a classic problem in Fourier analysis, whose answer is
provided by Plancherel’s theorem

1 oo 1kx _L oo ) e qr
f@)= = [ Fmeak = )= o [ " fa)eia

e applying this to our problem gives

+o0o
(k) = \/Lz_ﬂ /_ Um0 dn
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General Solution

o this is a classic problem in Fourier analysis, whose answer is
provided by Plancherel’s theorem

1 oo 1kx _L oo ) e qr
f@)= = [ Fmeak = )= o [ " fa)eia

e applying this to our problem gives

+o0o
(k) = \/LQ_W /_ Um0 dn

e now we can find ¥(z, t)
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de Broglie Wavelength and Speed

e these propogating waves have wavelength A\ = 27/|k|, and therefore
have momentum p = hk
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de Broglie Wavelength and Speed

e these propogating waves have wavelength A\ = 27/|k|, and therefore
have momentum p = hk

o the speed of the waves is given by dividing the coefficient of ¢ by
that of z in Wi(z,t), giving

Hi _ B

Uquantum =

2m 2m
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de Broglie Wavelength and Speed

e these propogating waves have wavelength A\ = 27/|k|, and therefore
have momentum p = hk

o the speed of the waves is given by dividing the coefficient of ¢ by
that of z in Wy (x, t), giving

hlk| E
Uquantum = % = %

@ this is contrary to classical speed, which can be determined, for a
free particle, by kinetic energy E = (1/2)mu?

2F
Uclassical = \| — = 2Uquantum
m
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Group and Phase Velocity

%
x

e the quantum velocity corresponds to the phase velocity, the velocity
of the individual ripples
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Group and Phase Velocity

i
o

e the quantum velocity corresponds to the phase velocity, the velocity
of the individual ripples

e the classical velocity corresponds to the group velocity, the velocity
of the envelope
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The Delta-Function Potential
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Classical Bound States and Scattering States

@ imagine a particle in a one-dimensional, time-independent potential
well, V(z)

Daniel Wysocki and Kenny Roffo Quantum Mechanics — Chapter 2



Classical Bound States and Scattering States

e imagine a particle in a one-dimensional, time-independent potential
well, V(z)

e in the classical realm, if V(z) at a point is greater than the
particle’s total energy FE, it may never pass that point
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Classical Bound States and Scattering States

e imagine a particle in a one-dimensional, time-independent potential
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Classical Bound States and Scattering States

e imagine a particle in a one-dimensional, time-independent potential
well, V(z)

e in the classical realm, if V(z) at a point is greater than the
particle’s total energy FE, it may never pass that point

e turning points

e if the particle is on some interval (a, b), and both V(a) and V(b)
exceed F, then the particle is “stuck”

e bound state

e if, on either side of the particle, E exceeds all values of V(z), then
the particle will go off to infinity
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Classical Bound States and Scattering States

e imagine a particle in a one-dimensional, time-independent potential
well, V(z)

e in the classical realm, if V(z) at a point is greater than the
particle’s total energy FE, it may never pass that point

e turning points

e if the particle is on some interval (a, b), and both V(a) and V(b)
exceed F, then the particle is “stuck”

e bound state

e if, on either side of the particle, E exceeds all values of V(z), then
the particle will go off to infinity

o scattering state
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Classical Bound and Scattering states

Vix)

(a)

Classical turning point

Daniel rsocki and Kenny Roffo
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Quantum Bound States and Scattering States

@ in the quantum realm, a particle may tunnel through any finite
potential barrier
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Quantum Bound States and Scattering States

@ in the quantum realm, a particle may tunnel through any finite
potential barrier
e now all that matters is the potential at infinity

E <[V(—o0) and V(+00)] = bound state,
E > [V(-o0) or V(+0)] = scattering state.
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Quantum Bound States and Scattering States

@ in the quantum realm, a particle may tunnel through any finite
potential barrier
e now all that matters is the potential at infinity

E <[V(—o0) and V(+00)] = bound state,
E > [V(-o0) or V(+0)] = scattering state.

@ in practice, most potentials go to zero at infinity, simplifying the
criterion to

E <0 = bound state,
E >0 = scattering state.
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Quantum Bound States and Scattering States

e bound state for classical particle, but scattering state for quantum
particle
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The Delta—Function Well

B(x)

xy

o the Dirac delta function has infinite height, infinitesimal width,
and an area of 1

0, ifz#0

oo, ifz=0

+oo
i(z) == ,  with / d(z)dz = 1.
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The Delta—Function Well

@ d(z — a) would be a spike of area 1 at the point a
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The Delta—Function Well

@ d(z — a) would be a spike of area 1 at the point a

e multiplying by a function f(z) is equivalent to multiplying by f(a),
as it is zero everywhere outside of a
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The Delta—Function Well

e as an example, consider a potential V(z) = —ad(x)
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The Delta—Function Well

e as an example, consider a potential V(z) = —ad(z)
e the wave function has ezactly one bound state, regardless of the
magnitude of «

/ 2
p(z) = YL gmmelal/?, g T

h ’ 2h?
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The Delta—Function Well

e as an example, consider a potential V(z) = —ad(z)
e the wave function has ezactly one bound state, regardless of the
magnitude of «

— 2
P(z) = YL gmmalal/n?, g O
h ’ 2h2
@ by considering the scattering state, we encounter several waves
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The Delta—Function Well

e as an example, consider a potential V(z) = —ad(z)
e the wave function has ezactly one bound state, regardless of the
magnitude of «

— 2
P(z) = YL gmmalal/n?, g O
h ’ 2h2
@ by considering the scattering state, we encounter several waves

e incident wave

o reflected wave
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The Delta—Function Well

e as an example, consider a potential V(z) = —ad(z)
e the wave function has ezactly one bound state, regardless of the
magnitude of «

— 2
P(z) = YL gmmalal/n?, g O
h ’ 2h2
@ by considering the scattering state, we encounter several waves

e incident wave
o reflected wave

e transmitted wave
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Reflection and Transmission

e R is the fraction of incoming particles that will bounce back
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Reflection and Transmission

e R is the fraction of incoming particles that will bounce back
o T is the fraction of incoming that will pass through the barrier

R+T=1
1 1
R— . T= .
1+ (2R2E/ma?) 1+ (ma?/2R%E)
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Reflection and Transmission

e R is the fraction of incoming particles that will bounce back
o T is the fraction of incoming that will pass through the barrier

R+T=1
R= ! . T = ! .
1+ (2R2E/ma?) 1+ (ma?/2R%E)

e the probability of transmission is proportional to the energy
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The Finite Square Well
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Problem

e consider the finite square well potential, where Vj is a positive real
potential

—Vo, for —a<z<a,
0, for|z| > a,

V(z) =

offo Quantum Mechanics — Chapter 2 February 12, 2015 23 / 30



General Solution

@ the general solution is given by

Fe™ ™", for z > a,
Dcos(lz), for0<z < a,
Y(—x), for z < 0.
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General Solution

o the general solution is given by

Fe™ ™, for > a,
Dcos(lzx), for0< z < a,
U(—x), for z < 0.

e continuity of ¢ (z) and ‘é—f at the boundaries imply x = [tan(la),
where
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Energy of the Finite Square Well

e k and [ are both functions of E, so to solve for E we first define:

z:=1la, and z := %\/2mV0.
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Energy of the Finite Square Well

e k and [ are both functions of E, so to solve for E we first define:

z:=1la, and z := %\/vao.

o these can be rewritten as a transcendental equation

tan z = \/(20/2)? — 1.
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Energy of the Finite Square Well

e k and [ are both functions of E, so to solve for E we first define:

z:=1la, and z := %\/vao.

o these can be rewritten as a transcendental equation

tan z = \/(20/2)? — 1.

e can only be solved numerically
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Energy of the Finite Square Well

tan z

; Vizo/2F

| Zg

3n/2 2n 5n/2 z
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Wide, Deep Well

where n is odd

e if z is very large, the intersections occur just below z, = nr/2,

1
En—i—Vog—

nmh

2m \ 2a
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Wide, Deep Well

e if z is very large, the intersections occur just below z, = nr/2,
where n is odd

2m \ 2a

2
1
Ent+ Vo — (mh>

o there are a finite number of bound states, but as Vy — oo, it
approaches the infinite square well, with infinite bound states
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Shallow, Narrow Well

@ as 7y decreases, so too does the number of bound states
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Shallow, Narrow Well

@ as 7y decreases, so too does the number of bound states

e this reaches a limit at z < m/2, where the lowest odd state
disappears, leaving a single state

>cki and Kenny Roffo Quantum Mechanics — Chapter 2 February 12, 2015

28 / 30



Shallow, Narrow Well

@ as 7y decreases, so too does the number of bound states
e this reaches a limit at z < m/2, where the lowest odd state
disappears, leaving a single state

@ no matter how small zy becomes, the number of bound states is
always at least one
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Transmission

T =1+ ism? (2—a\/2m(E+ Vi ))
T T UE(E+ V) h 0

e when the sine is zero, T'=1 (the well becomes “transparent”)
leaving us with

n?m2h?
2m(2a)?

En—i- V():

Daniel Wysocki and Kenny Roffo Quantum Mechanics — Chapter 2 February 12, 2015 29 / 30



Transmission

T =1+ ism? (%\/Qm(E+ Vi ))
T T UE(E+ V) h 0

e when the sine is zero, T'=1 (the well becomes “transparent”)
leaving us with

n’m?h?

2m(2a)?

@ these are the allowed energies of the infinite square well

En—i- V():
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Thank you!

y Roffo Quantum Mechanic;
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