Quantum Mechanics - Chapter 2

Daniel Wysocki and Kenny Roffo

February 12, 2015

(1) The Free Particle

(2) The Delta-Function Potential
(3) The Finite Square Well

The Free Particle

Wave Function

- the free particle has potential $V(x)=0$ everywhere

Wave Function

- the free particle has potential $V(x)=0$ everywhere
- classically this would give the particle constant velocity, but it is surprisingly tricky in quantum mechanics

Wave Function

- the free particle has potential $V(x)=0$ everywhere
- classically this would give the particle constant velocity, but it is surprisingly tricky in quantum mechanics
- since $V=0$, the time-independent Schrödinger wave equation is given by

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}=E \psi
$$

Wave Function

- the free particle has potential $V(x)=0$ everywhere
- classically this would give the particle constant velocity, but it is surprisingly tricky in quantum mechanics
- since $V=0$, the time-independent Schrödinger wave equation is given by

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}=E \psi \\
\frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}=-k^{2} \psi, \quad \text { where } k:=\frac{\sqrt{2 m E}}{\hbar}
\end{gathered}
$$

Wave Function

- this is a differential equation whose characteristic equation has imaginary roots

$$
\psi(x)=A e^{\imath k x}+B e^{-\imath k x}
$$

Wave Function

- this is a differential equation whose characteristic equation has imaginary roots

$$
\psi(x)=A e^{\imath k x}+B e^{-\imath k x}
$$

- multiplying by the time dependence $\varphi(t)$, we have the time-dependent wave equation

$$
\begin{gathered}
\Psi(x, t)=\left[A e^{\imath k x}+B e^{-\imath k x}\right] \exp \left(-\frac{\imath E}{\hbar} t\right) \\
\Psi(x, t)=A \exp \left[\imath k\left(x-\frac{\hbar k}{2 m} t\right)\right]+B \exp \left[-\imath k\left(x+\frac{\hbar k}{2 m} t\right)\right]
\end{gathered}
$$

Wave Function

- this is a differential equation whose characteristic equation has imaginary roots

$$
\psi(x)=A e^{\imath k x}+B e^{-\imath k x}
$$

- multiplying by the time dependence $\varphi(t)$, we have the time-dependent wave equation

$$
\begin{gathered}
\Psi(x, t)=\left[A e^{\imath k x}+B e^{-\imath k x}\right] \exp \left(-\frac{\imath E}{\hbar} t\right) \\
\Psi(x, t)=A \exp \left[\imath k\left(x-\frac{\hbar k}{2 m} t\right)\right]+B \exp \left[-\imath k\left(x+\frac{\hbar k}{2 m} t\right)\right]
\end{gathered}
$$

- the first term represents a wave travelling to the right, and the second to the left

Wave Function

- since each wave only differs by the sign of k, it will be useful to redefine k as

$$
k:= \pm \frac{\sqrt{2 m E}}{\hbar}
$$

Wave Function

- since each wave only differs by the sign of k, it will be useful to redefine k as

$$
k:= \pm \frac{\sqrt{2 m E}}{\hbar}
$$

- now we may rewrite the wave function as

$$
\Psi_{k}(x, t)=A \exp \left[\imath\left(k x-\frac{\hbar k^{2}}{2 m} t\right)\right]
$$

Normalization

- we cannot normalize Ψ_{k}, because $\Psi_{k}^{*} \Psi_{k}=|A|^{2}$, giving

$$
\int_{-\infty}^{+\infty} \Psi_{k}^{*} \Psi_{k} \mathrm{~d} x=|A|^{2} \int_{-\infty}^{+\infty} \mathrm{d} x=|A|^{2} \cdot \infty
$$

General Solution

- the general solution is still a linear combination of the separable solutions

General Solution

- the general solution is still a linear combination of the separable solutions
- this time k is not restricted to integral values, and so the linear combination must be an integral over k

$$
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) \exp \left[\imath\left(k x-\frac{\hbar k^{2}}{2 m} t\right)\right] \mathrm{d} k
$$

General Solution

- the general solution is still a linear combination of the separable solutions
- this time k is not restricted to integral values, and so the linear combination must be an integral over k

$$
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) \exp \left[\imath\left(k x-\frac{\hbar k^{2}}{2 m} t\right)\right] \mathrm{d} k
$$

- in essence, $(1 / \sqrt{2 \pi}) \phi(k) \mathrm{d} k$ is taking the place of the coefficients c_{n} in the discrete summation

General Solution

- in a specific problem, we are typically given an initial condition $\Psi(x, 0)$, and are asked to find $\Psi(x, t)$

General Solution

- in a specific problem, we are typically given an initial condition $\Psi(x, 0)$, and are asked to find $\Psi(x, t)$
- we only now have to solve for $\phi(k)$

$$
\Psi(x, 0)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{\imath k x} \mathrm{~d} k
$$

General Solution

- this is a classic problem in Fourier analysis, whose answer is provided by Plancherel's theorem

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F(k) e^{\imath k x} \mathrm{~d} k \Longleftrightarrow F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-\imath k x} \mathrm{~d} x
$$

General Solution

- this is a classic problem in Fourier analysis, whose answer is provided by Plancherel's theorem

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F(k) e^{\imath k x} \mathrm{~d} k \Longleftrightarrow F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-\imath k x} \mathrm{~d} x
$$

- applying this to our problem gives

$$
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Psi(x, 0) e^{-\imath k x} \mathrm{~d} x
$$

General Solution

- this is a classic problem in Fourier analysis, whose answer is provided by Plancherel's theorem

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F(k) e^{\imath k x} \mathrm{~d} k \Longleftrightarrow F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-\imath k x} \mathrm{~d} x
$$

- applying this to our problem gives

$$
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Psi(x, 0) e^{-\imath k x} \mathrm{~d} x
$$

- now we can find $\Psi(x, t)$

de Broglie Wavelength and Speed

- these propogating waves have wavelength $\lambda=2 \pi /|k|$, and therefore have momentum $p=\hbar k$

de Broglie Wavelength and Speed

- these propogating waves have wavelength $\lambda=2 \pi /|k|$, and therefore have momentum $p=\hbar k$
- the speed of the waves is given by dividing the coefficient of t by that of x in $\Psi_{k}(x, t)$, giving

$$
v_{\text {quantum }}=\frac{\hbar|k|}{2 m}=\sqrt{\frac{E}{2 m}}
$$

de Broglie Wavelength and Speed

- these propogating waves have wavelength $\lambda=2 \pi /|k|$, and therefore have momentum $p=\hbar k$
- the speed of the waves is given by dividing the coefficient of t by that of x in $\Psi_{k}(x, t)$, giving

$$
v_{\text {quantum }}=\frac{\hbar|k|}{2 m}=\sqrt{\frac{E}{2 m}}
$$

- this is contrary to classical speed, which can be determined, for a free particle, by kinetic energy $E=(1 / 2) m v^{2}$

$$
v_{\text {classical }}=\sqrt{\frac{2 E}{m}}=2 v_{\text {quantum }}
$$

Group and Phase Velocity

- the quantum velocity corresponds to the phase velocity, the velocity of the individual ripples

Group and Phase Velocity

- the quantum velocity corresponds to the phase velocity, the velocity of the individual ripples
- the classical velocity corresponds to the group velocity, the velocity of the envelope

The Delta-Function Potential

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point
- turning points

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point
- turning points
- if the particle is on some interval (a, b), and both $V(a)$ and $V(b)$ exceed E, then the particle is "stuck"

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point
- turning points
- if the particle is on some interval (a, b), and both $V(a)$ and $V(b)$ exceed E, then the particle is "stuck"
- bound state

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point
- turning points
- if the particle is on some interval (a, b), and both $V(a)$ and $V(b)$ exceed E, then the particle is "stuck"
- bound state
- if, on either side of the particle, E exceeds all values of $V(x)$, then the particle will go off to infinity

Classical Bound States and Scattering States

- imagine a particle in a one-dimensional, time-independent potential well, $V(x)$
- in the classical realm, if $V(x)$ at a point is greater than the particle's total energy E, it may never pass that point
- turning points
- if the particle is on some interval (a, b), and both $V(a)$ and $V(b)$ exceed E, then the particle is "stuck"
- bound state
- if, on either side of the particle, E exceeds all values of $V(x)$, then the particle will go off to infinity
- scattering state

Classical Bound and Scattering states

(a)

(b)

Quantum Bound States and Scattering States

- in the quantum realm, a particle may tunnel through any finite potential barrier

Quantum Bound States and Scattering States

- in the quantum realm, a particle may tunnel through any finite potential barrier
- now all that matters is the potential at infinity

$$
\begin{cases}E<[V(-\infty) \text { and } V(+\infty)] \Longrightarrow & \text { bound state } \\ E>[V(-\infty) \text { or } V(+\infty)] \Longrightarrow & \text { scattering state }\end{cases}
$$

Quantum Bound States and Scattering States

- in the quantum realm, a particle may tunnel through any finite potential barrier
- now all that matters is the potential at infinity

$$
\begin{cases}E<[V(-\infty) \text { and } V(+\infty)] \Longrightarrow & \text { bound state } \\ E>[V(-\infty) \text { or } V(+\infty)] \Longrightarrow & \text { scattering state }\end{cases}
$$

- in practice, most potentials go to zero at infinity, simplifying the criterion to

$$
\begin{cases}E<0 \Longrightarrow & \text { bound state } \\ E>0 \Longrightarrow & \text { scattering state }\end{cases}
$$

Quantum Bound States and Scattering States

- bound state for classical particle, but scattering state for quantum particle

The Delta-Function Well

- the Dirac delta function has infinite height, infinitesimal width, and an area of 1

$$
\delta(x):=\left\{\begin{array}{ll}
0, & \text { if } x \neq 0 \\
\infty, & \text { if } x=0
\end{array}, \quad \text { with } \int_{-\infty}^{+\infty} \delta(x) \mathrm{d} x=1\right.
$$

The Delta-Function Well

- $\delta(x-a)$ would be a spike of area 1 at the point a

The Delta-Function Well

- $\delta(x-a)$ would be a spike of area 1 at the point a
- multiplying by a function $f(x)$ is equivalent to multiplying by $f(a)$, as it is zero everywhere outside of a

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$
- the wave function has exactly one bound state, regardless of the magnitude of α

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$
- the wave function has exactly one bound state, regardless of the magnitude of α

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

- by considering the scattering state, we encounter several waves

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$
- the wave function has exactly one bound state, regardless of the magnitude of α

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

- by considering the scattering state, we encounter several waves
- incident wave

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$
- the wave function has exactly one bound state, regardless of the magnitude of α

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

- by considering the scattering state, we encounter several waves
- incident wave
- reflected wave

The Delta-Function Well

- as an example, consider a potential $V(x)=-\alpha \delta(x)$
- the wave function has exactly one bound state, regardless of the magnitude of α

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

- by considering the scattering state, we encounter several waves
- incident wave
- reflected wave
- transmitted wave

Reflection and Transmission

- R is the fraction of incoming particles that will bounce back

Reflection and Transmission

- R is the fraction of incoming particles that will bounce back
- T is the fraction of incoming that will pass through the barrier

$$
\begin{gathered}
R+T=1 \\
R=\frac{1}{1+\left(2 \hbar^{2} E / m \alpha^{2}\right)}, \quad T=\frac{1}{1+\left(m \alpha^{2} / 2 \hbar^{2} E\right)} .
\end{gathered}
$$

Reflection and Transmission

- R is the fraction of incoming particles that will bounce back
- T is the fraction of incoming that will pass through the barrier

$$
\begin{gathered}
R+T=1 \\
R=\frac{1}{1+\left(2 \hbar^{2} E / m \alpha^{2}\right)}, \quad T=\frac{1}{1+\left(m \alpha^{2} / 2 \hbar^{2} E\right)} .
\end{gathered}
$$

- the probability of transmission is proportional to the energy

The Finite Square Well

Problem

- consider the finite square well potential, where V_{0} is a positive real potential

$$
V(x)= \begin{cases}-V_{0}, & \text { for }-a \leq x \leq a \\ 0, & \text { for }|x|>a\end{cases}
$$

General Solution

- the general solution is given by

$$
\begin{cases}F e^{-\kappa x}, & \text { for } x>a, \\ D \cos (l x), & \text { for } 0<x<a, \\ \psi(-x), & \text { for } x<0\end{cases}
$$

General Solution

- the general solution is given by

$$
\begin{cases}F e^{-\kappa x}, & \text { for } x>a \\ D \cos (l x), & \text { for } 0<x<a \\ \psi(-x), & \text { for } x<0\end{cases}
$$

- continuity of $\psi(x)$ and $\frac{\mathrm{d} \psi}{\mathrm{d} x}$ at the boundaries imply $\kappa=l \tan (l a)$, where

$$
\begin{array}{r}
\kappa:=\frac{\sqrt{-2 m E}}{\hbar} \\
l:=\frac{\sqrt{2 m\left(E+V_{0}\right)}}{\hbar}
\end{array}
$$

Energy of the Finite Square Well

- κ and l are both functions of E, so to solve for E we first define:

$$
z:=l a, \quad \text { and } z_{0}:=\frac{a}{\hbar} \sqrt{2 m V_{0}} .
$$

Energy of the Finite Square Well

- κ and l are both functions of E, so to solve for E we first define:

$$
z:=l a, \quad \text { and } z_{0}:=\frac{a}{\hbar} \sqrt{2 m V_{0}} .
$$

- these can be rewritten as a transcendental equation

$$
\tan z=\sqrt{\left(z_{0} / z\right)^{2}-1}
$$

Energy of the Finite Square Well

- κ and l are both functions of E, so to solve for E we first define:

$$
z:=l a, \quad \text { and } z_{0}:=\frac{a}{\hbar} \sqrt{2 m V_{0}} .
$$

- these can be rewritten as a transcendental equation

$$
\tan z=\sqrt{\left(z_{0} / z\right)^{2}-1}
$$

- can only be solved numerically

Energy of the Finite Square Well

Wide, Deep Well

- if z_{0} is very large, the intersections occur just below $z_{n}=n \pi / 2$, where n is odd

$$
E_{n}+V_{0} \cong \frac{1}{2 m}\left(\frac{n \pi \hbar}{2 a}\right)^{2}
$$

Wide, Deep Well

- if z_{0} is very large, the intersections occur just below $z_{n}=n \pi / 2$, where n is odd

$$
E_{n}+V_{0} \cong \frac{1}{2 m}\left(\frac{n \pi \hbar}{2 a}\right)^{2}
$$

- there are a finite number of bound states, but as $V_{0} \rightarrow \infty$, it approaches the infinite square well, with infinite bound states

Shallow, Narrow Well

- as z_{0} decreases, so too does the number of bound states

Shallow, Narrow Well

- as z_{0} decreases, so too does the number of bound states
- this reaches a limit at $z_{0}<\pi / 2$, where the lowest odd state disappears, leaving a single state

Shallow, Narrow Well

- as z_{0} decreases, so too does the number of bound states
- this reaches a limit at $z_{0}<\pi / 2$, where the lowest odd state disappears, leaving a single state
- no matter how small z_{0} becomes, the number of bound states is always at least one

Transmission

$$
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)
$$

- when the sine is zero, $T=1$ (the well becomes "transparent") leaving us with

$$
E_{n}+V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}}
$$

Transmission

$$
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)
$$

- when the sine is zero, $T=1$ (the well becomes "transparent") leaving us with

$$
E_{n}+V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}}
$$

- these are the allowed energies of the infinite square well

Thank you!

