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Linear Algebra

quantum theory is based on wave functions and operators

the state of a system is represented by its wave function
observables are represented by operators
wave functions satisfy the defining conditions for abstract vectors
operators act on them as linear transformations

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 3 February 19, 2015 4 / 17



Linear Algebra

quantum theory is based on wave functions and operators
the state of a system is represented by its wave function

observables are represented by operators
wave functions satisfy the defining conditions for abstract vectors
operators act on them as linear transformations

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 3 February 19, 2015 4 / 17



Linear Algebra

quantum theory is based on wave functions and operators
the state of a system is represented by its wave function
observables are represented by operators

wave functions satisfy the defining conditions for abstract vectors
operators act on them as linear transformations

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 3 February 19, 2015 4 / 17



Linear Algebra

quantum theory is based on wave functions and operators
the state of a system is represented by its wave function
observables are represented by operators
wave functions satisfy the defining conditions for abstract vectors

operators act on them as linear transformations

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 3 February 19, 2015 4 / 17



Linear Algebra

quantum theory is based on wave functions and operators
the state of a system is represented by its wave function
observables are represented by operators
wave functions satisfy the defining conditions for abstract vectors
operators act on them as linear transformations

Daniel Wysocki and Kenny Roffo Quantum Mechanics – Chapter 3 February 19, 2015 4 / 17



Vectors

in an N -dimensional space, a vector |α〉 may be represented by the
N -tuple of its components, {an}, with respect to a specified
orthonormal basis

|α〉 → a =


a1
a2
...
aN



the “vectors” in quantum mechanics are typically functions, existing
in infinite-dimensional spaces

the N -tuple notation used to represent finite-dimensional vectors
becomes problematic
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Bra–ket Notation

the inner product of two vectors, |α〉 and |β〉, is a generalization of
the dot product, and is denoted 〈α|β〉

〈α|β〉 = a∗1b1 + a∗2b2 + . . .+ a∗NbN

here, 〈α| is called the “bra”, and |β〉 is called the “ket”
when α and β are functions on the interval (a, b), the inner product
is given by the familiar integral
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Hilbert Space

a wave function must be normalized, i.e.

〈Ψ|Ψ〉 =
∫ ∞
−∞

Ψ∗Ψdx =
∫ ∞
−∞
|Ψ|2 dx = 1

a function, f (x) is square-integrable if, on a specified interval (a, b)

the set of all such functions is called Hilbert space

mathematicians call this L2(a, b)

wave functions live in Hilbert space
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Schwarz Inequality

the integral Schwarz inequality states∣∣∣∣∣
∫ b

a
f (x)∗g(x) dx

∣∣∣∣∣ ≤
√∫ b

a

∣∣f (x)
∣∣2 dx ∫ b

a

∣∣g(x)
∣∣2 dx

all functions that live in Hilbert space are square integrable

they have finite square integrals

as a result, the right the right hand side of the Schwarz inequality is
guaranteed to be finite for all functions f , g ∈ L2(a, b)
the left side, or the magnitude of the inner product of our two
functions, must be finite as well
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Some Properties of Inner Products

if f and g are both square-integrable, then 〈f |g〉 is guaranteed to
exist

〈g|f 〉 = 〈f |g〉∗

〈f |f 〉 is real and non-negative, and zero only if f (x) ≡ 0
f is normalized if 〈f |f 〉 = 1
f and g are orthogonal if 〈f |g〉 = 0
a set of functions {fn} is orthonormal if 〈fm |fn〉 = δmn
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Complete Functions

a set of functions {fn} is said to be complete if any other function in
Hilbert space can be expressed as a linear combination of them

f (x) =
∞∑

n=1
cnfn(x)

if the functions {fn} are orthonormal, then their coefficients may be
obtained by Fourier’s trick: cn = 〈fn |f 〉
the stationary states {ψn} for the infinite square well form a
complete orthonormal set on the interval (0, a)
the stationary states for the harmonic oscillator form a complete
orthonormal set on the interval (−∞,∞)
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Observables
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Hermitian Operators

the expectation value of an operator Q(x, p) can be expressed as

〈Q〉 =
∫

Ψ∗Q̂Ψdx =
〈

Ψ
∣∣∣Q̂Ψ

〉

the outcome of a measurement must be real, therefore 〈Q〉 = 〈Q〉∗

but the complex conjugate reverses the order, meaning〈
Ψ
∣∣∣Q̂Ψ

〉
=
〈
Q̂Ψ

∣∣∣Ψ〉
all operators representing observables possess this property
such operators are called hermitian
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Determinate States

in general, if you observe Q on a set of systems in the identical
state Ψ, you do not obtain the same result each time

this is the indeterminacy of quantum mechanics
a determinate state, for a given observable Q, is a special case, in
which each observation gives the same value, q
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Determinate States

the standard deviation of an observable Q, in a determinate state
would be zero

σ2 =
〈

(Q̂ − 〈Q〉)2
〉

=
〈

Ψ
∣∣∣(Q̂ − q)2Ψ

〉
=
〈

(Q̂ − q)Ψ
∣∣∣(Q̂ − q)Ψ

〉
= 0

the only function whose inner product with itself vanishes is zero

Ψ is an eigenfunction for Q̂, with eigenvalue q
all determinate states are eigenfunctions of Q̂
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Spectrum

the collection of all eigenvalues of an operator is called its spectrum

in the case where two or more linearly independent eigenfunctions
share an eigenvalue, the spectrum is said to be degenerate
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Hamiltonian

stationary states are determinate states of the Hamiltonian

they are the eigenfunctions of the Hamiltonian, with eigenvalue E :
Ĥψ = Eψ
including the time dependence ϕ(t) to make it Ψ does not change
the fact that it is an eigenfunction of Ĥ
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Thank you!
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