Quantum Mechanics - Chapter 3

Daniel Wysocki and Kenny Roffo

February 19, 2015
(1) Hilbert Space
(2) Observables

Hilbert Space

Linear Algebra

- quantum theory is based on wave functions and operators

Linear Algebra

- quantum theory is based on wave functions and operators
- the state of a system is represented by its wave function

Linear Algebra

- quantum theory is based on wave functions and operators
- the state of a system is represented by its wave function
- observables are represented by operators

Linear Algebra

- quantum theory is based on wave functions and operators
- the state of a system is represented by its wave function
- observables are represented by operators
- wave functions satisfy the defining conditions for abstract vectors

Linear Algebra

- quantum theory is based on wave functions and operators
- the state of a system is represented by its wave function
- observables are represented by operators
- wave functions satisfy the defining conditions for abstract vectors
- operators act on them as linear transformations

Vectors

- in an N-dimensional space, a vector $|\alpha\rangle$ may be represented by the N-tuple of its components, $\left\{a_{n}\right\}$, with respect to a specified orthonormal basis

$$
|\alpha\rangle \rightarrow \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Vectors

- in an N-dimensional space, a vector $|\alpha\rangle$ may be represented by the N-tuple of its components, $\left\{a_{n}\right\}$, with respect to a specified orthonormal basis

$$
|\alpha\rangle \rightarrow \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

- the "vectors" in quantum mechanics are typically functions, existing in infinite-dimensional spaces

Vectors

- in an N-dimensional space, a vector $|\alpha\rangle$ may be represented by the N-tuple of its components, $\left\{a_{n}\right\}$, with respect to a specified orthonormal basis

$$
|\alpha\rangle \rightarrow \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

- the "vectors" in quantum mechanics are typically functions, existing in infinite-dimensional spaces
- the N-tuple notation used to represent finite-dimensional vectors becomes problematic

Bra-ket Notation

- the inner product of two vectors, $|\alpha\rangle$ and $|\beta\rangle$, is a generalization of the dot product, and is denoted $\langle\alpha \mid \beta\rangle$

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\ldots+a_{N}^{*} b_{N}
$$

Bra-ket Notation

- the inner product of two vectors, $|\alpha\rangle$ and $|\beta\rangle$, is a generalization of the dot product, and is denoted $\langle\alpha \mid \beta\rangle$

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\ldots+a_{N}^{*} b_{N}
$$

- here, $\langle\alpha|$ is called the "bra", and $|\beta\rangle$ is called the "ket"

Bra-ket Notation

- the inner product of two vectors, $|\alpha\rangle$ and $|\beta\rangle$, is a generalization of the dot product, and is denoted $\langle\alpha \mid \beta\rangle$

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\ldots+a_{N}^{*} b_{N}
$$

- here, $\langle\alpha|$ is called the "bra", and $|\beta\rangle$ is called the "ket"
- when α and β are functions on the interval (a, b), the inner product is given by the familiar integral

$$
\langle\alpha \mid \beta\rangle=\int_{a}^{b} \alpha(x)^{*} \beta(x) \mathrm{d} x
$$

Hilbert Space

- a wave function must be normalized, i.e.

$$
\langle\Psi \mid \Psi\rangle=\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=\int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{~d} x=1
$$

Hilbert Space

- a wave function must be normalized, i.e.

$$
\langle\Psi \mid \Psi\rangle=\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=\int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{~d} x=1
$$

- a function, $f(x)$ is square-integrable if, on a specified interval (a, b)

$$
\langle f \mid f\rangle=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x<\infty
$$

Hilbert Space

- a wave function must be normalized, i.e.

$$
\langle\Psi \mid \Psi\rangle=\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=\int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{~d} x=1
$$

- a function, $f(x)$ is square-integrable if, on a specified interval (a, b)

$$
\langle f \mid f\rangle=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x<\infty
$$

- the set of all such functions is called Hilbert space

Hilbert Space

- a wave function must be normalized, i.e.

$$
\langle\Psi \mid \Psi\rangle=\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=\int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{~d} x=1
$$

- a function, $f(x)$ is square-integrable if, on a specified interval (a, b)

$$
\langle f \mid f\rangle=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x<\infty
$$

- the set of all such functions is called Hilbert space
- mathematicians call this $L_{2}(a, b)$

Hilbert Space

- a wave function must be normalized, i.e.

$$
\langle\Psi \mid \Psi\rangle=\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=\int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{~d} x=1
$$

- a function, $f(x)$ is square-integrable if, on a specified interval (a, b)

$$
\langle f \mid f\rangle=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x<\infty
$$

- the set of all such functions is called Hilbert space
- mathematicians call this $L_{2}(a, b)$
- wave functions live in Hilbert space

Schwarz Inequality

- the integral Schwarz inequality states

$$
\left|\int_{a}^{b} f(x)^{*} g(x) \mathrm{d} x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \int_{a}^{b}|g(x)|^{2} \mathrm{~d} x}
$$

Schwarz Inequality

- the integral Schwarz inequality states

$$
\left|\int_{a}^{b} f(x)^{*} g(x) \mathrm{d} x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \int_{a}^{b}|g(x)|^{2} \mathrm{~d} x}
$$

- all functions that live in Hilbert space are square integrable

Schwarz Inequality

- the integral Schwarz inequality states

$$
\left|\int_{a}^{b} f(x)^{*} g(x) \mathrm{d} x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \int_{a}^{b}|g(x)|^{2} \mathrm{~d} x}
$$

- all functions that live in Hilbert space are square integrable
- they have finite square integrals

Schwarz Inequality

- the integral Schwarz inequality states

$$
\left|\int_{a}^{b} f(x)^{*} g(x) \mathrm{d} x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \int_{a}^{b}|g(x)|^{2} \mathrm{~d} x}
$$

- all functions that live in Hilbert space are square integrable
- they have finite square integrals
- as a result, the right the right hand side of the Schwarz inequality is guaranteed to be finite for all functions $f, g \in L_{2}(a, b)$

Schwarz Inequality

- the integral Schwarz inequality states

$$
\left|\int_{a}^{b} f(x)^{*} g(x) \mathrm{d} x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x \int_{a}^{b}|g(x)|^{2} \mathrm{~d} x}
$$

- all functions that live in Hilbert space are square integrable
- they have finite square integrals
- as a result, the right the right hand side of the Schwarz inequality is guaranteed to be finite for all functions $f, g \in L_{2}(a, b)$
- the left side, or the magnitude of the inner product of our two functions, must be finite as well

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist
- $\langle g \mid f\rangle=\langle f \mid g\rangle^{*}$

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist
- $\langle g \mid f\rangle=\langle f \mid g\rangle^{*}$
- $\langle f \mid f\rangle$ is real and non-negative, and zero only if $f(x) \equiv 0$

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist
- $\langle g \mid f\rangle=\langle f \mid g\rangle^{*}$
- $\langle f \mid f\rangle$ is real and non-negative, and zero only if $f(x) \equiv 0$
- f is normalized if $\langle f \mid f\rangle=1$

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist
- $\langle g \mid f\rangle=\langle f \mid g\rangle^{*}$
- $\langle f \mid f\rangle$ is real and non-negative, and zero only if $f(x) \equiv 0$
- f is normalized if $\langle f \mid f\rangle=1$
- f and g are orthogonal if $\langle f \mid g\rangle=0$

Some Properties of Inner Products

- if f and g are both square-integrable, then $\langle f \mid g\rangle$ is guaranteed to exist
- $\langle g \mid f\rangle=\langle f \mid g\rangle^{*}$
- $\langle f \mid f\rangle$ is real and non-negative, and zero only if $f(x) \equiv 0$
- f is normalized if $\langle f \mid f\rangle=1$
- f and g are orthogonal if $\langle f \mid g\rangle=0$
- a set of functions $\left\{f_{n}\right\}$ is orthonormal if $\left\langle f_{m} \mid f_{n}\right\rangle=\delta_{m n}$

Complete Functions

- a set of functions $\left\{f_{n}\right\}$ is said to be complete if any other function in Hilbert space can be expressed as a linear combination of them

$$
f(x)=\sum_{n=1}^{\infty} c_{n} f_{n}(x)
$$

Complete Functions

- a set of functions $\left\{f_{n}\right\}$ is said to be complete if any other function in Hilbert space can be expressed as a linear combination of them

$$
f(x)=\sum_{n=1}^{\infty} c_{n} f_{n}(x)
$$

- if the functions $\left\{f_{n}\right\}$ are orthonormal, then their coefficients may be obtained by Fourier's trick: $c_{n}=\left\langle f_{n} \mid f\right\rangle$

Complete Functions

- a set of functions $\left\{f_{n}\right\}$ is said to be complete if any other function in Hilbert space can be expressed as a linear combination of them

$$
f(x)=\sum_{n=1}^{\infty} c_{n} f_{n}(x)
$$

- if the functions $\left\{f_{n}\right\}$ are orthonormal, then their coefficients may be obtained by Fourier's trick: $c_{n}=\left\langle f_{n} \mid f\right\rangle$
- the stationary states $\left\{\psi_{n}\right\}$ for the infinite square well form a complete orthonormal set on the interval $(0, a)$

Complete Functions

- a set of functions $\left\{f_{n}\right\}$ is said to be complete if any other function in Hilbert space can be expressed as a linear combination of them

$$
f(x)=\sum_{n=1}^{\infty} c_{n} f_{n}(x)
$$

- if the functions $\left\{f_{n}\right\}$ are orthonormal, then their coefficients may be obtained by Fourier's trick: $c_{n}=\left\langle f_{n} \mid f\right\rangle$
- the stationary states $\left\{\psi_{n}\right\}$ for the infinite square well form a complete orthonormal set on the interval $(0, a)$
- the stationary states for the harmonic oscillator form a complete orthonormal set on the interval $(-\infty, \infty)$

Observables

Hermitian Operators

- the expectation value of an operator $Q(x, p)$ can be expressed as

$$
\langle Q\rangle=\int \Psi^{*} \hat{Q} \Psi \mathrm{~d} x=\langle\Psi \mid \hat{Q} \Psi\rangle
$$

Hermitian Operators

- the expectation value of an operator $Q(x, p)$ can be expressed as

$$
\langle Q\rangle=\int \Psi^{*} \hat{Q} \Psi \mathrm{~d} x=\langle\Psi \mid \hat{Q} \Psi\rangle
$$

- the outcome of a measurement must be real, therefore $\langle Q\rangle=\langle Q\rangle^{*}$

Hermitian Operators

- the expectation value of an operator $Q(x, p)$ can be expressed as

$$
\langle Q\rangle=\int \Psi^{*} \hat{Q} \Psi \mathrm{~d} x=\langle\Psi \mid \hat{Q} \Psi\rangle
$$

- the outcome of a measurement must be real, therefore $\langle Q\rangle=\langle Q\rangle^{*}$
- but the complex conjugate reverses the order, meaning $\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\hat{Q} \Psi \mid \Psi\rangle$

Hermitian Operators

- the expectation value of an operator $Q(x, p)$ can be expressed as

$$
\langle Q\rangle=\int \Psi^{*} \hat{Q} \Psi \mathrm{~d} x=\langle\Psi \mid \hat{Q} \Psi\rangle
$$

- the outcome of a measurement must be real, therefore $\langle Q\rangle=\langle Q\rangle^{*}$
- but the complex conjugate reverses the order, meaning $\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\hat{Q} \Psi \mid \Psi\rangle$
- all operators representing observables possess this property

Hermitian Operators

- the expectation value of an operator $Q(x, p)$ can be expressed as

$$
\langle Q\rangle=\int \Psi^{*} \hat{Q} \Psi \mathrm{~d} x=\langle\Psi \mid \hat{Q} \Psi\rangle
$$

- the outcome of a measurement must be real, therefore $\langle Q\rangle=\langle Q\rangle^{*}$
- but the complex conjugate reverses the order, meaning $\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\hat{Q} \Psi \mid \Psi\rangle$
- all operators representing observables possess this property
- such operators are called hermitian

Determinate States

- in general, if you observe Q on a set of systems in the identical state Ψ, you do not obtain the same result each time

Determinate States

- in general, if you observe Q on a set of systems in the identical state Ψ, you do not obtain the same result each time
- this is the indeterminacy of quantum mechanics

Determinate States

- in general, if you observe Q on a set of systems in the identical state Ψ, you do not obtain the same result each time
- this is the indeterminacy of quantum mechanics
- a determinate state, for a given observable Q, is a special case, in which each observation gives the same value, q

Determinate States

- the standard deviation of an observable Q, in a determinate state would be zero

$$
\begin{aligned}
\sigma^{2} & =\left\langle(\hat{Q}-\langle Q\rangle)^{2}\right\rangle \\
& =\left\langle\Psi \mid(\hat{Q}-q)^{2} \Psi\right\rangle \\
& =\langle(\hat{Q}-q) \Psi \mid(\hat{Q}-q) \Psi\rangle=0
\end{aligned}
$$

Determinate States

- the standard deviation of an observable Q, in a determinate state would be zero

$$
\begin{aligned}
\sigma^{2} & =\left\langle(\hat{Q}-\langle Q\rangle)^{2}\right\rangle \\
& =\left\langle\Psi \mid(\hat{Q}-q)^{2} \Psi\right\rangle \\
& =\langle(\hat{Q}-q) \Psi \mid(\hat{Q}-q) \Psi\rangle=0
\end{aligned}
$$

- the only function whose inner product with itself vanishes is zero

$$
(\hat{Q}-q) \Psi=0 \Longrightarrow \hat{Q} \Psi=q \Psi
$$

Determinate States

- the standard deviation of an observable Q, in a determinate state would be zero

$$
\begin{aligned}
\sigma^{2} & =\left\langle(\hat{Q}-\langle Q\rangle)^{2}\right\rangle \\
& =\left\langle\Psi \mid(\hat{Q}-q)^{2} \Psi\right\rangle \\
& =\langle(\hat{Q}-q) \Psi \mid(\hat{Q}-q) \Psi\rangle=0
\end{aligned}
$$

- the only function whose inner product with itself vanishes is zero

$$
(\hat{Q}-q) \Psi=0 \Longrightarrow \hat{Q} \Psi=q \Psi
$$

- Ψ is an eigenfunction for \hat{Q}, with eigenvalue q

Determinate States

- the standard deviation of an observable Q, in a determinate state would be zero

$$
\begin{aligned}
\sigma^{2} & =\left\langle(\hat{Q}-\langle Q\rangle)^{2}\right\rangle \\
& =\left\langle\Psi \mid(\hat{Q}-q)^{2} \Psi\right\rangle \\
& =\langle(\hat{Q}-q) \Psi \mid(\hat{Q}-q) \Psi\rangle=0
\end{aligned}
$$

- the only function whose inner product with itself vanishes is zero

$$
(\hat{Q}-q) \Psi=0 \Longrightarrow \hat{Q} \Psi=q \Psi
$$

- Ψ is an eigenfunction for \hat{Q}, with eigenvalue q
- all determinate states are eigenfunctions of \hat{Q}

Spectrum

- the collection of all eigenvalues of an operator is called its spectrum

Spectrum

- the collection of all eigenvalues of an operator is called its spectrum
- in the case where two or more linearly independent eigenfunctions share an eigenvalue, the spectrum is said to be degenerate

Hamiltonian

- stationary states are determinate states of the Hamiltonian

Hamiltonian

- stationary states are determinate states of the Hamiltonian
- they are the eigenfunctions of the Hamiltonian, with eigenvalue E :

$$
\hat{H} \psi=E \psi
$$

Hamiltonian

- stationary states are determinate states of the Hamiltonian
- they are the eigenfunctions of the Hamiltonian, with eigenvalue E : $\hat{H} \psi=E \psi$
- including the time dependence $\varphi(t)$ to make it Ψ does not change the fact that it is an eigenfunction of \hat{H}

Thank you!

